Skip to main navigation menu Skip to main content Skip to site footer

Genetic variation in two candidate genes against gastrointestinal parasites in Colombian Hair Sheep

Variación genética en dos genes candidatos contra parásitos gastrointestinales en Ovinos de Pelo Colombiano



How to Cite
Hernández-Herrera, D. ., Lenis-Valencia, C. ., & Montes-Vergara, D. (2024). Genetic variation in two candidate genes against gastrointestinal parasites in Colombian Hair Sheep. Journal MVZ Cordoba, 27(s), e2747. https://doi.org/10.21897/rmvz.2747

Dimensions
PlumX
Darwin Hernández-Herrera
Claudia Lenis-Valencia
Donicer Montes-Vergara

Objective. To characterize two SNP-type genetic polymorphisms in the GLI1 (rs411868094) and IL20RA (rs419463995) genes, candidates for resistance against gastrointestinal parasites in two biotypes of Colombian hair sheep. Materials and methods. From the DNA bank of the Animal Genetics Laboratory of the University of Sucre, 167 samples, belonging to the Ethiopian (n=94) and Sudan (n=73) biotypes, were analyzed by PCR and subsequent bidirectional sequencing of two SNPs in the GLI1 (T>G) and IL20RA (G>A) genes. Allelic and genotypic frequencies, observed (Ho) and expected (He) heterozygosity, F index, and Hardy-Weinberg equilibrium deviations (EHW) were calculated using the GENALEX version 6.5 program. Results. For the GLI1 locus, the mean genotypic frequencies were 0.155±0.07, 0.370±0.07, and 0.475±0.07 for GG, GT, and TT, respectively. In the Ethiopian biotype, the highest frequencies of the genotype of interest (GG) were found. For the IL20RA locus, the AA and AG genotypes had similar and the highest frequency (0.465±0.03) compared to the GG genotype (0.110±0.01). The genotype of interest at this locus (AA) was the most frequent in both OPC biotypes. Conclusions. The alleles of interest associated with low FEC had a low frequency for the GLI1 gene, but a high frequency for IL20RA. The Ethiopian OPC biotype showed the highest frequencies of the genotypes of interest.


Article visits 415 | PDF visits


Downloads

Download data is not yet available.
  1. Vivas N, Vincenzo L, Muñoz J, Moris B, Álvarez L. Diversidad genética de ovinos criollos colombianos. Rev MVZ Córdoba. 2020; 25(3):e2185–e2185. https://doi.org/10.21897/rmvz.2185
  2. Wanjala G, Bagi Z, Kusza S. Meta-Analysis of Mitochondrial DNA Control Region Diversity to Shed Light on Phylogenetic Relationship and Demographic History of African Sheep (Ovis aries) Breeds. Biology. 2021; 10(8):762. https://doi.org/10.3390/biology10080762
  3. Arevalo A, Correa G. Tecnología en la ovinocultura colombiana: estado del arte. Rev Cienc Anim. 2013; 1(6):125–142. https://ciencia.lasalle.edu.co/ca/vol1/iss6/10
  4. Hernández D, Montes D, De la Ossa J. Asociación del polimorfismo FecB con la prolificidad natural del Ovino de Pelo Colombiano. Rev MVZ Córdoba. 2020; 25(1):1–6. https://doi.org/10.21897/rmvz.1771
  5. Al Kalaldeh M, Gibson J, Duijvesteijn N, Daetwyler H, MacLeod I, Moghaddar N, et al. Using imputed whole-genome sequence data to improve the accuracy of genomic prediction for parasite resistance in Australian sheep. Genet Sel Evol. 2019; 51(1):32. https://doi.org/10.1186/s12711-019-0476-4
  6. Al Kalaldeh M, Gibson J, Lee S, Gondro C, van der Werf J. Detection of genomic regions underlying resistance to gastrointestinal parasites in Australian sheep. Genet Sel Evol 2019; 51(1):37. https://doi.org/10.1186/s12711-019-0479-1
  7. Atlija M, Arranz J, Martinez-Valladares M, Gutiérrez-Gil B. Detection and replication of QTL underlying resistance to gastrointestinal nematodes in adult sheep using the ovine 50K SNP array. Genet Sel Evol. 2016; 48(1):4. https://doi.org/10.1186/s12711-016-0182-4
  8. Díaz-Anaya A, Chavarro-Tulcán G, Pulido-Medellín M, García-Corredor D, Vargas-Avella J. Estudio coproparasitológico en ovinos al pastoreo en Boyacá, Colombia. Rev Salud Anim. 2017; 39(1):1–8. http://revistas.censa.edu.cu/index.php/RSA/article/view/884
  9. Kahn LP, Woodgate RG. Integrated parasite management: Products for adoption by the Australian sheep industry. Vet Parasitol. 2012; 186(1):58–64. https://doi.org/10.1016/j.vetpar.2011.11.046
  10. Ilangopathy M, Palavesam A, Pandian S, Muthusamy R. Economic Impact of Gastrointestinal Nematodes on Meat Production from Sheep. Int J Livest Res. 2019; 9(10):44–48. https://10.5455/ijlr.20190331051814
  11. Scala A, Pipia AP, Dore F, Sanna G, Tamponi C, Marrosu R, et al. Epidemiological updates and economic losses due to Taenia hydatigena in sheep from Sardinia, Italy. Parasitol Res. 2015; 114(8):3137–3143. https://doi.org/10.1007/s00436-015-4532-x
  12. Kaplan RM. Biology, Epidemiology, Diagnosis, and Management of Anthelmintic Resistance in Gastrointestinal Nematodes of Livestock. Vet Clin Food Anim Pract. 2020; 36(1):17–30. https://doi.org/10.1016/j.cvfa.2019.12.001
  13. Periasamy K, Pichler R, Poli M, Cristel S, Cetrá B, Medus D, et al. Candidate Gene Approach for Parasite Resistance in Sheep – Variation in Immune Pathway Genes and Association with Fecal Egg Count. PLOS ONE. 2014; 9(2):e88337. https://doi.org/10.1371/journal.pone.0088337
  14. Wilkie H, Riggio V, Matika O, Nicol L, Watt K, Sinclair R, et al. A candidate gene approach to study nematode resistance traits in naturally infected sheep. Vet Parasitol. 2017; 243:71–74. https://doi.org/10.1016/j.vetpar.2017.06.010
  15. Becker GM, Davenport KM, Burke JM, Lewis RM, Miller JE, Morgan JLM, et al. Genome-wide association study to identify genetic loci associated with gastrointestinal nematode resistance in Katahdin sheep. Anim Genet. 2020; 51(2):330–335. https://doi.org/10.1111/age.12895
  16. Ngere L, Burke JM, Morgan JLM, Miller JE, Notter DR. Genetic parameters for fecal egg counts and their relationship with body weights in Katahdin lambs. J Anim Sci. 2018; 96(5):1590–1599. https://doi.org/10.1093/jas/sky064
  17. Notter D, Ngere L, Burke J, Miller J, Morgan J. Genetic parameters for ewe reproductive performance and peri-parturient fecal egg counts and their genetic relationships with lamb body weights and fecal egg counts in Katahdin sheep. J Anim Sci. 2018; 96(5):157915–89. https://doi.org/10.1093/jas/sky100
  18. Hu Z-L, Park C, Reecy J. Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Res. 2019; 47(D1):701–710. https://doi.org/10.1093/nar/gky1084
  19. Pickering N, Auvray B, Dodds K, McEwan J. Genomic prediction and genome-wide association study for dagginess and host internal parasite resistance in New Zealand sheep. BMC Genomics. 2015; 16(1):958. https://doi.org/10.1186/s12864-015-2148-2
  20. Excoffier L, Lischer, H. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. 2010; 10:564-567. https://10.1111/j.1755-0998.2010.02847.x
  21. Benavides M, Sonstegard T, Kemp S, Mugambi J, Gibson J, Baker R, et al. Identification of Novel Loci Associated with Gastrointestinal Parasite Resistance in a Red Maasai x Dorper Backcross Population. PLOS ONE 2015; 10(4):e0122797. https://doi.org/10.1371/journal.pone.0122797
  22. Aguerre S, Jacquiet P, Brodier H, Bournazel JP, Grisez C, Prévot F, et al. Resistance to gastrointestinal nematodes in dairy sheep: Genetic variability and relevance of artificial infection of nucleus rams to select for resistant ewes on farms. Vet Parasitol. 2018; 256:16–23. https://doi.org/10.1016/j.vetpar.2018.04.004
  23. Berton M, Silva R, Carvalho F, Chiaia H, Oliveira P, Eler JP, et al. Genetic parameter estimates for gastrointestinal nematode parasite resistance and maternal efficiency indicator traits in Santa Inês breed. J Anim Breed Genet. 2019; 136(6):495–504. https://doi.org/10.1111/jbg.12424
  24. González-Garduño R, Mendoza-de Gives P, López-Arellano ME, Aguilar-Marcelino L, Torres-Hernández G, Ojeda-Robertos NF, et al. Influence of the physiological stage of Blackbelly sheep on immunological behaviour against gastrointestinal nematodes. Exp Parasitol. 2018; 193:20–26. https://doi.org/10.1016/j.exppara.2018.08.003
  25. Zhang R, Liu F, Hunt P, Li C, Zhang L, Ingham A, et al. Transcriptome analysis unraveled potential mechanisms of resistance to Haemonchus contortus infection in Merino sheep populations bred for parasite resistance. Vet Res. 2019; 50(1):7. https://doi.org/10.1186/s13567-019-0622-6
  26. Greer AW, McKenzie JL, McAnulty RW, Huntley JF, McNeilly TN. Immune development and performance characteristics of Romney sheep selected for either resistance or resilience to gastrointestinal nematodes. Vet Parasitol. 2018; 250:60–67. https://doi.org/10.1016/j.vetpar.2017.12.013
  27. McBean D, Nath M, Kenyon F, Zile K, Bartley D, Jackson F. Faecal egg counts and immune markers in a line of Scottish Cashmere goats selected for resistance to gastrointestinal nematode parasite infection. Vet Parasitol. 2016; 229:1–8. https://doi.org/10.1016/j.vetpar.2016.08.027
  28. Niciura SCM, Cruvinel GG, Moraes CV, Chagas ACS, Esteves SN, Benavides MV, et al. In vivo selection for Haemonchus contortus resistance to monepantel. J Helminthol. 2020; 94:e46. https://doi.org/10.1017/S0022149X19000221
  29. Herrera L, Rios L, Zapata R. Frecuencia de la infección por nemátodos gastrointestinales en ovinos y caprinos de cinco municipios de Antioquia. Rev MVZ Córdoba. 2013; 18(3):3851–3860. https://doi.org/10.21897/rmvz.157
  30. Zapata R, Velásquez R, Herrera L, Rios O, Polanco D. Prevalencia de Nematodos Gastrointestinales en Sistemas de Producción Ovina y Caprina bajo Confinamiento, Semiconfinamiento y Pastoreo en Municipios de Antioquia, Colombia. Rev Investig Vet Perú. 2016; 27(2):344–354. https://doi.org/10.15381/rivep.v27i2.11647
  31. Ensuncho-Hoyos C, Castellano-Coronado A, Maza-Ángulo L, Bustamante-Yánez M, Vergara O. Prevalencia y grado de infección de nematodos gastrointestinales en ovinos de pelo en pastoreo de cuatro municipios de Cordoba, Colombia. Rev Científica FCV-LUZ. 2014; 24(5):414–420. https://www.produccioncientificaluz.org/index.php/cientifica/article/view/10592
  32. Hui C, Angers S. Gli Proteins in Development and Disease. Annu Rev Cell Dev Biol. 2011; 27(1):513–537. https://doi.org/10.1146/annurev-cellbio-092910-154048
  33. Lama-Sherpa T, Lin V, Metge B, Weeks S, Chen D, Samant R, et al. Hedgehog signaling enables repair of ribosomal DNA double-strand breaks. Nucleic Acids Res. 2020; 48(18):10342–10352. https://doi.org/10.1093/nar/gkaa733
  34. Xavier G, Seppala M, Barrell W, Birjandi A, Geoghegan F, Cobourne M. Hedgehog receptor function during craniofacial development. Dev Biol. 2016; 415(2):198–215. https://doi.org/10.1016/j.ydbio.2016.02.009
  35. Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines — from host defence to tissue homeostasis. Nat Rev Immunol. 2014; 14(12):783–795. https://doi.org/10.1038/nri3766
  36. Raschia M, Donzelli M, Medus P, Cetrá B, Maizon D, Suarez V, et al. Single nucleotide polymorphisms from candidate genes associated with nematode resistance and resilience in Corriedale and Pampinta sheep in Argentina. Gene. 2021; 770:145345. https://doi.org/10.1016/j.gene.2020.145345
  37. Estrada-Reyes Z, Tsukahara Y, Amadeu R, Goetsch A, Gipson T, Sahlu T, et al. Signatures of selection for resistance to Haemonchus contortus in sheep and goats. BMC Genomics. 2019; 20(1):735. https://doi.org/10.1186/s12864-019-6150-y
  38. Yaro M, Munyard KA, Morgan E, Allcock RJN, Stear MJ, Groth DM. Analysis of pooled genome sequences from Djallonke and Sahelian sheep of Ghana reveals co-localisation of regions of reduced heterozygosity with candidate genes for disease resistance and adaptation to a tropical environment. BMC Genomics. 2019; 20(1):816. https://doi.org/10.1186/s12864-019-6198-8
  39. Gao W, Wen H, Liang L, Dong X, Du R, Zhou W, et al. IL20RA signaling enhances stemness and promotes the formation of an immunosuppressive microenvironment in breast cancer. Theranostics. 2021; 11(6):2564–2580. https://www.thno.org/v11p2564.htm
  40. Ekegbu U, Burrows L, Amirpour-Najafabadi H, Zhou H, Hickford J. Gene polymorphisms in PROP1 associated with growth traits in sheep. Gene. 2019; 683:41–46. https://doi.org/10.1016/j.gene.2018.10.024

Sistema OJS 3.4.0.3 - Metabiblioteca |