Skip to main navigation menu Skip to main content Skip to site footer

Oxidative stress on alpaca epididimal sperm frozen with different concentrations of seminal plasma

Estrés oxidativo en espermatozoides epididimarios de alpaca criopreservados con diferentes concentraciones de plasma seminal



How to Cite
Jimenez-Carpio, J. S., & Ugarelli-Galarza, A. (2024). Oxidative stress on alpaca epididimal sperm frozen with different concentrations of seminal plasma. Journal MVZ Cordoba, 29(1), e2833. https://doi.org/10.21897/rmvz.2833

Dimensions
PlumX
Jhoana Stefani Jimenez-Carpio
Alejandra Ugarelli-Galarza
Shirley Sujey Evangelista-Vargas

Jhoana Stefani Jimenez-Carpio,

Universidad Científica del Sur, Facultad de Ciencias Veterinarias y Biológicas, Laboratorio de Biotecnología Reproductiva y Celular


Alejandra Ugarelli-Galarza,

Universidad Científica del Sur, Facultad de Ciencias Veterinarias y Biológicas, Laboratorio de Biotecnología Reproductiva y Celular


Shirley Sujey Evangelista-Vargas,

Universidad Científica del Sur, Facultad de Ciencias Veterinarias y Biológicas, Laboratorio de Biotecnología Reproductiva y Celular


Objective. To assess the oxidative stress on alpaca epididimal sperm frozen with different concentration of seminal plasma. Materials and methods. 29 post mortem alpaca epididymis were used. Epididymal sperm were obteined thought cuts and suspended in a diluent based on skim milk, egg yolk and fructose and dimethylacetamine. Samples were separated into four aliquots which were supplied with seminal plasma (v/v) in concentrations of 0, 10, 25 and 50% respectively; then, sperm motility was assessed before freezing; then, motility was assessed before freezing with an automatic freezer machine. After thawing, mitochondrial membrane activity, sperm viability, lipid peroxidation and sperm apoptosis were assessed using flow cytometry with images. Results. Sperm exposed to 50% seminal plasma showed the lowest post-thaw motility (3.5±3.7%) and the highest percentages of apoptotic cells (71.43±20.6%). No significant differences were found in the rest of parameters. Conclusions. This study constitutes non-conclusive evidence that presence of seminal plasma does not affect viability, mitochondrial activity, or lipid peroxidation of alpaca epididymal sperm during cryopreservation processes; however, when it is absent or added up to 25% in the cryopreservation process, it may be possible to obtain better results in terms of sperm motility and sperm apoptosis.


Article visits 305 | PDF visits


Downloads

Download data is not yet available.
  1. Kershaw-Young, & Maxwell; Seminal Plasma Components in Camelids and Comparisons with Other Species. Reprod Domest Anim. 2012;47(SUPPL.4):369–375. https://doi.org/10.1111/j.1439-0531.2012.02100.x
  2. Zhang, Yang, Zou, Jiang, Zeng, Chen, et al.; Mitochondrial functionality modifies human sperm acrosin activity, acrosome reaction capability and chromatin integrity. Hum Reprod. 2019;34(1):3–11. https://doi.org/10.1093/humrep/dey335
  3. Durairajanayagam, Singh, Agarwal, & Henkel; Causes and consequences of sperm mitochondrial dysfunction. Andrologia. 2021;53(1). https://doi.org/10.1111/and.13666
  4. Sabeti, Pourmasumi, Rahiminia, Akyash, & Talebi; Etiologies of sperm oxidative stress. Int J Reprod Biomed. 2016;14(4):231–240. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918773/
  5. Ghaleno, Alizadeh, Drevet, Shahverdi, & Valojerdi; Oxidation of sperm dna and male infertility. Antioxidants. 2021;10(1):1–15. https://doi.org/10.3390/antiox10010097
  6. Aitken, Baker, & Nixon; Are sperm capacitation and apoptosis the opposite ends of a continuum driven by oxidative stress? Asian J Androl. 2015;17(4):633–639. https://www.ajandrology.com/text.asp?2015/17/4/633/153850
  7. Aitken; Not every sperm is sacred; a perspective on male infertility. Mol Hum Reprod. 2018;24(6):287–298. https://doi.org/10.1093/molehr/gay010
  8. Evangelista, Trelles, Muchotrigo, Choez, & Santiani; Producción intracelular de anión superóxido, peróxido de hidrógeno y peroxidación lipídica durante el proceso de criopreservación de semen de alpaca. Spermova. 2014;4(1):61–63. http://spermova.pe/site/files/revista2014n4v1/07_Evangelista-alapacas-61-63.pdf
  9. Stuart, Vaughan, Kershaw-Young, Wilkinson, Bathgate, & de Graaf; Effects of varying doses of β-nerve growth factor on the timing of ovulation, plasma progesterone concentration and corpus luteum size in female alpacas (Vicugna pacos). Reprod Fertil Dev. 2014;27(8):1181. https://doi.org/10.1071/RD14037
  10. Terreros, Huanca, Arriaga, & Ampuero; Efecto de tres crioprotectores en la criopreservación de espermatozoides epididimarios de alpaca. Rev Investig Vet del Perú. 2015;26(3):420–426. http://dx.doi.org/10.15381/rivep.v26i3.11182
  11. Allauca, Ugarelli, & Santiani; Determinación del potencial de membrana mitocondrial mediante citometría de flujo durante el proceso de criopreservación de espermatozoides epididimarios de alpacas. Rev Investig Vet del Perú. 2019;30(1):288–298. http://dx.doi.org/10.15381/rivep.v30i1.15677
  12. Kershaw-Young, & Maxwell; The effect of seminal plasma on alpaca sperm function. Theriogenology. 2011;76(7):1197–1206. https://doi.org/10.1016/j.theriogenology.2011.05.016
  13. Aisen, Huanca, Pérez, Torres, Villanueva, Ousset, et al.; Spermatozoa Obtained From Alpaca vas deferens. Effects of Seminal Plasma Added at Post-thawing. Front Vet Sci. 2021;0:48. https://doi.org/10.3389/fvets.2021.611301
  14. Fumuso, Giuliano, Chaves, Neild, Miragaya, Gambarotta, et al.; Seminal plasma affects the survival rate and motility pattern of raw llama spermatozoa. Anim Reprod Sci. 2018;192:99–106. https://doi.org/10.1016/j.anireprosci.2018.02.019
  15. Fumuso, Giuliano, Chaves, Neild, Miragaya, & Carretero; Evaluation of the cryoprotective effect of seminal plasma on llama (Lama glama) spermatozoa. Andrologia. 2019;51(6):e13270. https://doi.org/10.1111/and.13270
  16. Fumuso, Giuliano, Chaves, Neild, Miragaya, Bertuzzi, et al.; Incubation of frozen-thawed llama sperm with seminal plasma. Andrologia. 2020;52(6):e13597. https://doi.org/10.1111/and.13597
  17. Bravo, Alarcon, Baca, Cuba, Ordoñez, Salinas, et al.; Semen preservation and artificial insemination in domesticated South American camelids. Anim Reprod Sci. 2013;136(3):157–163. https://doi.org/10.1016/j.anireprosci.2012.10.005
  18. Banda, Evangelista, Ruiz, Sandoval, Rodríguez, Valdivia, et al.; Efecto de dilutores en base a Tris, Tes y leche descremada en la criopreservación de espermatozoides obtenidos del epidídimo de alpaca. Rev Investig Vet del Perú. 2010;21(2):145–153. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1609-91172010000200001&lng=es.
  19. Choez, Ruiz, Sandoval, Evangelista, & Santiani; Determinación de la concentración óptima de tres crioprotectores para la criopreservación de espermatozoides epididimarios de alpaca. Rev Investig Vet del Perú. 2017;28(3):619–628. http://dx.doi.org/10.15381/rivep.v28i3.13367
  20. Santiani, Ugarelli, & Evangelista; Characterization of functional variables in epididymal alpaca (Vicugna pacos) sperm using imaging flow cytometry. Anim Reprod Sci. 2016;173:49–55. https://doi.org/10.1016/j.anireprosci.2016.08.010
  21. Mamani, Moina, Ramos, Mendoza, Ruiz, Rivas, et al.; Effect of Extender and Freezing Rate on Quality Parameters and In Vitro Fertilization Capacity of Alpaca Spermatozoa Recovered from Cauda Epididymis. Biopreserv Biobank. 2019;17(1):39–45. https://doi.org/10.1089/bio.2018.0021
  22. Juárez, & Santiani; Determinación del porcentaje de viabilidad espermática mediante citometría de flujo durante el proceso de criopreservación en espermatozoides obtenidos de epidídimo de alpaca. Rev Investig Vet del Perú. 2019;30(3):1175–1183. https://doi.org/10.15381/rivep.v30i3.16608
  23. Choez, Evangelista, & Santiani; Comparación de las características seminales de las alpacas huacaya y suri. Spermova. 2015;5(1):139–143. http://dx.doi.org/10.18548/aspe/0002.31
  24. Morton, Bathgate, Evans, & Maxwell; Cryopreservation of epididymal alpaca (Vicugna pacos) sperm: a comparison of citrate-, Tris- and lactose-based diluents and pellets and straws. Reprod Fertil Dev. 2007;19(7):792. https://doi.org/10.1071/RD07049
  25. Canorio, Paredes, & Valdivia; Agentes crioprotectores alternativos para el congelamiento lento de espermatozoides epididimarios de alpaca (Vicugna pacos). Rev Investig Vet del Peru. 2015;26(3):434–443. http://dx.doi.org/10.15381/rivep.v26i3.11185
  26. Contreras, García, & Santiani; Evaluación de dimetilacetamida y dimetilformamida como agentes crioprotectores para espermatozoides epididimarios de alpaca (Vicugna pacos). Rev Investig Vet del Perú. 2020;31(1):e17548. https://doi.org/10.15381/rivep.v31i1.17548
  27. Gadella, & Visconti; Regulation of capacitation. In: De Jonge, & Barratt, editors. The Sperm Cell: Production, Maturation, Fertilization, Regeneration. Cambridge University Press; 2006.;134–169. https://doi.org/10.1017/CBO9780511545115.007
  28. Demchenko; Beyond annexin V: Fluorescence response of cellular membranes to apoptosis. Cytotechnology. 2013;65(2):157–172. https://doi.org/10.1007/s10616-012-9481-y
  29. Yániz, Palacín, Vicente, Gosalvez, López, & Santolaria; Comparison of Membrane-Permeant Fluorescent Probes for Sperm Viability Assessment in the Ram. Reprod Domest Anim. 2013;48(4):598–603. https://doi.org/10.1111/rda.12132
  30. Ortega, González, Morrell, Salazar, Macías, Rodríguez, et al.; Lipid peroxidation, assessed with BODIPY-C 11, increases after cryopreservation of stallion spermatozoa, is stallion-dependent and is related to apoptotic-like changes. Reproduction. 2009;138(1):55–63. https://doi.org/10.1530/REP-08-0484
  31. Aitken; Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol Reprod Dev. 2017;84(10):1039–1052. https://doi.org/10.1002/mrd.22871

Sistema OJS 3.4.0.3 - Metabiblioteca |