Skip to main navigation menu Skip to main content Skip to site footer

Effect of retrobulbar block on heart rate variability during exenteration in cows

Efecto del bloqueo retrobulbar en la variabilidad de la frecuencia cardiaca durante la exenteración en vacas



How to Cite
Cedeño-Quevedo, D. A. ., Botina-Jiménez, M. ., & Enríquez R., C. . (2023). Effect of retrobulbar block on heart rate variability during exenteration in cows. Journal MVZ Cordoba, 28(1), e2854. https://doi.org/10.21897/rmvz.2854

Dimensions
PlumX
Dario Alejandro Cedeño-Quevedo
Marcela Botina-Jiménez
Camila Enríquez R.

Dario Alejandro Cedeño-Quevedo,

Universidad de Nariño, Facultad de ciencias Pecuarias, Departamento de Salud Animal, Grupo de investigación BUIATRIA, Pasto, Colombia.


Marcela Botina-Jiménez,

Universidad de Nariño, Facultad de ciencias Pecuarias, Departamento de Salud Animal, Grupo de investigación BUIATRIA, Pasto, Colombia.


Camila Enríquez R.,

Universidad de Nariño, Facultad de ciencias Pecuarias, Departamento de Salud Animal, Grupo de investigación BUIATRIA, Pasto, Colombia.


Objective. To evaluate the effect of retrobulbar block during orbital exenteration on heart rate variability (HRV). Materials and methods. Fourteen adult cows with ocular squamous cell carcinoma were used. Ocular exenteration is performed under multimodal anesthesia. The cows were sedated (xylazine 2%) and the auriculopalpebral nerve was blocked (lidocaine 2%). They were randomly assigned to two groups, one with a four-point block (n=7) and the second with a retrobulbar block (n=7). Electrocardiograms were recorded during two hours of the surgery in six moments by means of a Holter monitor (Cardio Trak Digital Holter Recorder, Model CT-085, BENEWARE). The data obtained were analyzed using linear methods in the frequency and time domain. Mean heart rate (HR) and mean beat-to-beat interval (RR) duration were evaluated in the time domain. In domain frequency included low (LF), high frequency (HF) and sympathovagal balance (LF/HF) of HRV. Results. In both groups there was a significant increase in heart rate during ocular traction. There were no significant changes in HRV between the different moments of the procedure. Conclusions. During manipulation and exenteration of the eyeball, no decrease in HR associated with the oculocardiac reflex was detected, but sympathetic activation was detected as a result of painful surgical stimuli. No central nervous system (CNS) toxicity from local anesthetics occurred in the animals.


Article visits 297 | PDF visits


Downloads

Download data is not yet available.
  1. Cedeño Quevedo DA, Calpa CA, Córdoba V, Ibarra AF. Tratamiento quirúrgico en las etapas de desarrollo del carcinoma ocular de células escamosas en bovinos del trópico alto del departamento de Nariño. Rev CES Med Zootec. 2019; 14(3):98-109. https://doi.org/10.21615/cesmvz.14
  2. Cedeño Quevedo DA, Calpa CA, Guerron T, Mera G. Estudio retrospectivo del carcinoma de células escamosas en bovinos en el departamento de Nariño. Colombia. Rev Med Vet. 2020; 39:75-84 https://doi.org/10.19052/mv.vol1.iss39.8
  3. Schulz K. Field surgery of the eye and para-orbital tissues. Vet Clin North Am Food Anim Pract 2008; 24:527–34. https://doi.org/10.1016/j.cvfa.2008.07.003
  4. Cedeño Quevedo DA. Anestesia y cirugías en campo de bovinos de leche del tropico alto en el departamento de Nariño. 1era Edición. Editorial Navegante: Bogotá. Colombia; 2021.
  5. Brooks DE. Complications of ophthalmic surgery in the horse. Vet Clin North Am Equine Pract. 2008; 24(3):697-734. https://doi.org/10.1016/j.cveq.2008.08.001
  6. Oel C, Gerhards H, Gehlen H. Effect of retrobulbar nerve block on heart rate variability during enucleation in horses under general anesthesia. Vet Ophthalmol. 2014; 17(3):170–174. https://doi.org/10.1111/vop.12061
  7. Vézina R, Steagall P, Gianotti G. Prevalence of and covariates associated with the oculocardiac reflex occurring in dogs during enucleation. J Am Vet Med Assoc. 2019; 255(4):454-458. https://doi.org/10.2460/javma.255.4.454
  8. Shaw-Edwards R. Surgical treatment of the eye in farm animals.2010: Vet Clin North Am Food Anim Pract. 2010; 26(3):459-476. https://doi.org/10.1016/j.cvfa.2010.09.007
  9. Stewart K, Dominic A. Regional anaesthesia of the bovine head. Livestock. 2016; 21(6):354-360. https://doi.org/10.12968/live.2016.21.6.354
  10. Edmondson MA. Local and regional anesthesia in cattle. Vet Clin North Am Food Anim Pract. 2008; 24(2):211-226. https://doi.org/10.1016/j.cvfa.2008.02.013
  11. Kovács L, Jurkovich V, Bakony M, Szenci O, Póti P, Tőzsér J. Welfare implication of measuring heart rate and heart rate variability in dairy cattle: literature review and conclusions for future research. Animal 2014; 8:316-330. https://doi.org/10.1017/S1751731113002140
  12. Gaidica M, Dantzer B. Quantifying the Autonomic Response to Stressors—One Way to Expand the Definition of “Stress” in Animals. Integr Comp Biol. 2020; 60(1):113–125. https://doi.org/10.1093/icb/icaa009
  13. Wierig M, Mandtler LP, Rottmann P, Stroh V, Müller U, Büscher W, Plümer L. Recording Heart Rate Variability of Dairy Cows to the Cloud—Why Smartphones Provide Smart Solutions. Sensors (Basel). 2018; 18:2541. https://doi.org/10.3390/s18082541
  14. Stuckea D, Große M, Lebelta RD. Measuring heart rate variability in horses to investigate the autonomic nervous system activity – Pros and cons of different methods. Appl Anim Behav Sci. 2015: 166:1-10. https://doi.org/10.1016/j.applanim.2015.02.007
  15. Stewart M, Stafford KJ, Dowling SK, Schaefer AL, Webster JR. Eye temperature and heart rate variability of calves disbudded with or without local anaesthetic. Physiol Behav. 2008; 93:89-797. https://doi.org/10.1016/j.physbeh.2007.11.044
  16. Pieler D, Peinhopf W, Becher A, Aurich JE, Rose-Meierhöfer S, Erber R, Möstl E, Aurich C. Physiological and behavioral stress parameters in calves in response to partial scrotal resection. orchidectomy. and Burdizzo castration. J. Dairy Sci. 2013: 96;6378–6389. http://dx.doi.org/10.3168/jds.2013-6683
  17. Cedeño Quevedo DA, Lourenço ML, Daza CA, Alfonso A, Ulian C, Chiacchio S. Maternal. fetal and neonatal heart rate and heart rate variability in Holstein cattle. Pesq Vet Bras. 2019; 39(4):286-291. http://dx.doi.org/10.1590/1678-5150-PVB-5757
  18. Task Force of the European Society of Cardiology and North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation J Am Heart Assoc. 1996; 93(5):1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043
  19. Pessoa RB, Batista CF, Santos CR, Bellinazzi JB, Melville AM, Matiko ML, Larsson A. Holter Monitoring (24-h Electrocardiography) of Holstein Calves. Acta Sci Vet. 2016; 44(1374):1-5. http://dx.doi.10.22456/1679-9216.81081
  20. Ceyhan CS, Murat C, Doğan Y, Muhittin AS. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med. 2021; 31(1):1-27. https://doi.org/10.11613/BM.2021.010502
  21. Aoki T, Itoh M, Chiba A, Kuwahara M, Nogami H, Ishizaki H, Yayou KI. Heart rate variability in dairy cows with postpartum fever during night phase. PLoS One. 2020; 15(11):1-14. https://doi.org/10.1371/journal.pone.024285
  22. Gelatt KN, Gelatt JP. Plummer C. Veterinary Ophthalmic Surgery. 1 Edition. Elseviers Saunders. 2011.
  23. Frondelius L, Hietaoja J, Pastell M, Hänninen L, Anttila P, Mononen J. Influence of postoperative pain and use of NSAID on heart rate variability of dairy cows. J Dairy Res. 2018; 85:27–29. https://doi.org/10.1017/S0022029917000760
  24. Lumb WV, Jones EW. Preanesthetics and Anesthetic Adjuncts. En: Thurmon JC, Tranquilli WJ, Benson GJ, editors. Veterinary Anesthesia. Philadelphia: Williams and Wilkins; 2015.
  25. Ueno T, Tsuchiya H, Mizogami M, Takakura K. Local anesthetic failure associated with inflammation: verification of the acidosis mechanism and the hypothetic participation of inflammatory peroxynitrite. J Inflamm Res. 2008; 1:41–48. https://doi.org/10.2147/jir.s3982

Sistema OJS 3.4.0.3 - Metabiblioteca |