Skip to main navigation menu Skip to main content Skip to site footer

Effect of climate on thermal response in cows of different racial groups in lower tropic

Efecto del clima sobre la respuesta térmica en vacas de diferentes grupos raciales en trópico bajo



How to Cite
Molina-Benavides, R. A., Perilla-Duque, S. M. ., Campos-Gaona, R. ., Sánchez-Guerrero, H. ., Rivera-Palacio, J. C. ., Muñoz-Borja, L. A., & Jiménez-Rodas, D. R. . (2023). Effect of climate on thermal response in cows of different racial groups in lower tropic. Journal MVZ Cordoba, 28(3), e2921. https://doi.org/10.21897/rmvz.2921

Dimensions
PlumX
Raúl Andrés Molina-Benavides
Sandra Milena Perilla-Duque
Rómulo Campos-Gaona
Hugo Sánchez-Guerrero
Juan Camilo Rivera-Palacio
Luis Armando Muñoz-Borja
Daniel Ricardo Jiménez-Rodas

Raúl Andrés Molina-Benavides,

Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias. Departamento de Producción Animal. Palmira, Colombia.


Sandra Milena Perilla-Duque,

Productos Naturales de la Sabana SAS “Alquería”. Palmira, Colombia.


Rómulo Campos-Gaona,

Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias. Departamento de Producción Animal. Palmira, Colombia.


Hugo Sánchez-Guerrero,

Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias. Departamento de Producción Animal. Palmira, Colombia.


Juan Camilo Rivera-Palacio,

Centro internacional de agricultura tropical. Grupo de Investigación de Agricultura Digital CGIAR. Palmira, Colombia.


Luis Armando Muñoz-Borja,

Centro internacional de agricultura tropical. Grupo de Investigación de Agricultura Digital CGIAR. Palmira, Colombia.


Daniel Ricardo Jiménez-Rodas,

Centro internacional de agricultura tropical. Grupo de Investigación de Agricultura Digital CGIAR. Palmira, Colombia.


Objective. The main idea of this study was to quantify the relationship between climatic variables and tympanic body temperature recorded through the use of wireless sensors in grazing cows located in low tropic. Material and methods. The tympanic temperature of twenty-eight cross breed grazing cows in early lactation was monitored. The sensors were manually installed in the tympanic cavity, recording hourly for 17 days. The climate data was obtained from the network of weather stations of the Centro de Investigación de la Caña de Azúcar “Cenicaña”, which is a research center for sugarcane located in Cali, Colombia, this data was analyzed for the same time interval of the temperature. The information was analyzed using descriptive statistics, correlation matrices and Random Forest models, through the R software. Results. From the physiological data from automatic collection systems, the response variables that would allow the evaluation of thermoregulation processes were analyzed using big data. We find that the variables environmental temperature, relative humidity and, solar radiation were the factors that most influenced the homeothermic adaptation process of the animals. Conclusions. The introduction of remote devices, and the use of a large amount of data for the analysis of physiological indicators, avoid modifying natural animal behavior and emerges as an important diagnostic and management strategy in the livestock farm, helping in the studies of heat stress, physiological adaptation and, prevalence to hemotropic diseases, which reduce the productivity of the systems.


Article visits 234 | PDF visits


Downloads

Download data is not yet available.
  1. Collier R, Gebremedhin K. Thermal biology of domestic animals. Annu. Rev. Anim. Biosci. 2015; 3:513–532. https://doi.org/10.1146/annurev-animal-022114-110659
  2. de Vasconcelos A, de Albuquerque C, de Carvalho J, Façanha E, Lima F, Silveira R et al. Adaptive profile of dairy cows in a tropical region. Int J Biometeorol. 2020; 64(1):105–113. https://doi.org/10.1007/s00484-019-01797-9
  3. Oosting S, Udo H, Viets T. Development of livestock production in the tropics: Farm and farmers’ perspectives. Animal. 2014; 8(8):1238–1248. https://doi.org/10.1017/S1751731114000548.
  4. Barragán-Hernández W, Mahecha-Ledesma L, Cajas-Jirón Y. Variables fisiológicas-metabólicas de estrés calórico en vacas bajo silvopastoreo y pradera sin árboles. Agron. Mesoam. 2015; 26(2):211. https://doi.org/10.15517/am.v26i2.19277
  5. Liu J, Chen L, Lu Y, Wang D. Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: A novel idea for monitoring and evaluation of heat stress — A review. Asian-Australasian J. Anim. Sci. 2019; 32(9): 1332–1339. https://doi.org/10.5713/ajas.18.0743
  6. Barrera A, Angeli N, Machado L, Cardoso F, Gonzalez F. Relationships between heat stress and metabolic and milk parameters in dairy cows in southern Brazil. Trop. Anim. Health Prod. 2015; 47(5): 889–894. https://doi.org/10.1007/s11250-015-0804-9
  7. Lopes L, Eckstein C, Pina D, Carnevalli R. The influence of trees on the thermal environment and behaviour of grazing heifers in Brazilian Midwest. Trop. Anim. Health Prod. 2016; 48(4): 755–761. https://doi.org/10.1007/s11250-016-1021-x.
  8. Piñeros-Barón R, Mora-Delgado J. Índice de temperatura y humedad en una pastura convencional y un sistema agroforestal en el trópico seco de Colombia. Zootec Trop. 2015; 33(3):207–216.
  9. Martínez R, Gallego J, Onofre G, Pérez J, Vasquez R. Evaluación de la variabilidad y potencial genético de poblaciones de bovinos criollos colombianos. Anim Genet Resour Inf. 2009; 44:57–66. https://doi.org/10.1017/S1014233900002868.
  10. Milani M, Hense A, Rahmani E, Ploeger A. A Pilot Investigation of the Relationship between Climate Variability and Milk Compounds under the Bootstrap Technique. Foods. 2015; 4(4):420–439. https://doi.org/10.3390/foods4030420
  11. Scharf B, Leonard M, Weaber R, Mader T, Hahn G, Spiers D. Determinants of bovine thermal response to heat and solar radiation exposures in a field environment. Int J Biometeorol. 2011; 55(4):469–480. https://doi.org/10.1007/s00484-010-0360-y.
  12. Moretti R, Biffani S, Chessa S, Bozzi R. Heat stress effects on Holstein dairy cows’ rumination. Animal. 2017; 11:2320–2325. https://doi.org/10.1017/S1751731117001173.
  13. Correa-García Z, Campos R, Flórez H. Physiological adaptation indicators of three Colombian Creole cattle breeds. Rev. Fac. Nac. Agron. 2022; 75(2): 9951–9960. https://doi.org/10.15446/rfnam.v75n2.95718
  14. da Costa A, Feitosa J, Montezuma P, de Souza P, de Araújo A. Rectal temperatures, respiratory rates, production, and reproduction performances of crossbred Girolando cows under heat stress in northeastern Brazil. Int J Biometeorol. 2015; 59(11):1647–1653. https://doi.org/10.1007/s00484-015-0971-4.
  15. Gomes da Silva R, Façanha Morais D, Guilhermino M. Evaluation of thermal stress indexes for dairy cows in tropical regions. Rev Bras Zootec. 2007; 36:1192–1198. http://dx.doi.org/10.1590/S1516-35982007000500028
  16. Mayer J, Davis J, Purswell J, Koury E, Younan N, Larson J et al. Development and characterization of a continuous tympanic temperature logging (CTTL) probe for bovine animals. Trans ASABE. 2016; 59(2):703–714. https://doi.org/10.13031/trans.59.11367
  17. Godyń D, Herbut P, Angrecka S. Measurements of peripheral and deep body temperature in cattle – A review. J Therm Biol. 2019; 79:42–49. https://doi.org/10.1016/j.jtherbio.2018.11.011
  18. Sellier N, Guettier E, Staub C. A Review of Methods to Measure Animal Body Temperature in Precision Farming. Am J Agric Sci Technol. 2014; 2(2):74-99. https://doi.org/10.7726/ajast.2014.1008
  19. Neethirajan S. Transforming the adaptation physiology of farm animals through sensors. Animals. 2020; 10(9):1–24. https://doi.org/10.3390/ani10091512
  20. Arce A, Tech A, Silva A, Costa E. Monitorización de rebaños de bovinos a través de redes de sensores inalámbricos. Arch. Zootec. 2009; 58(222):253–263. https://doi.org/10.4321/s0004-05922009000200010
  21. Odintsov Vaintrub M, Levit H, Chincarini M, Fusaro I, Giammarco M, Vignola G. Review: Precision livestock farming, automats and new technologies: possible applications in extensive dairy sheep farming. Animal. 2021; 15(3):100143. https://doi.org/10.1016/j.animal.2020.100143
  22. García K, Campos R, Giraldo L. Suplementación vitamínica y mineral como estrategia para reducir la incidencia de cetosis bovina en el trópico bajo. Rev Colomb Cienc Anim - RECIA. 2016; 8(2):204–213. https://doi.org/10.24188/recia.v8.n2.2016.188.
  23. Cavestany D, Blanc J, Kulcsar M, Uriarte G, Chilibroste P, Meikle A et al. Studies of the transition cow under a pasture‐based milk production system: metabolic profiles. J Vet Med A Physiol Pathol Clin Med. 2005; 52(1):1–7. https://doi.org/10.1111/j.1439-0442.2004.00679.x
  24. Veléz-terranova M, Molina Benavides R, Sánchez Guerrero H, Campos Gaona R, Perilla S. Influence of climatic conditions on tympanic temperature and milk production in grazing cows. J Anim Behav Biometeorol. 2021; 9(2132):1–9. https://doi.org/10.31893/jabb.21032
  25. R Studio Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2020
  26. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Elements. 2009; 1: 337–387. https://doi.org/10.1007/b94608
  27. Gomes da Silva R, Campos Maia A. Principles of Animal Biometeorology. Netherlands. Springer Dordrecht. 2013.
  28. Koltes J, Koltes D, Mote B, Tucker J, Hubbell D. Automated collection of heat stress data in livestock: New technologies and opportunities. Transl Anim Sci. 2018; 2(3):319–323. https://doi.org/10.1093/tas/txy061.
  29. Jara I, Keim J, Arias R. Behaviour, tympanic temperature and performance of dairy cows during summer season in southern Chile. Arch Med Vet. 2016; 48(1):113–118. https://doi.org/10.4067/S0301-732X2016000100014.
  30. Hillman P, Gebremedhin K, Willard S, Lee C, Kennedy A. Continuous Measurements of Vaginal Temperature of Female Cattle Using A Data Logger Encased in a Plastic Anchor. Appl Eng Agric. 2009; 25(2):291–296. https://doi.org/10.13031/2013.26332.
  31. Martello L, Junior H, Silva S, Titto E. Respostas Fisiológicas e Produtivas de Vacas Holandesas em Lactação Submetidas a Diferentes Ambientes. R Bras Zootec. 2004; 33(1):181–191. https://doi.org/10.1590/S1516-35982004000100022
  32. Gantner V, Bobic T, Gantner R, Gregic M, Kuterovac K, Novakovic J et al. Differences in response to heat stress due to production level and breed of dairy cows. Int J Biometeorol. 2017; 61(9):1675–1685. https://doi.org/10.1007/s00484-017-1348-7.
  33. Ruiz-Jaramillo J, Vargas-Leitón B, Abarca-Monge S, Hidalgo H. Heat stress effect on dairy cattle production in Costa Rica. Agron Mesoamerican. 2019; 30(3): 733–750. https://doi.org/10.15517/am.v30i3.35984.
  34. Anzures-Olvera F, Véliz F, de Santiago A, García J, Mellado J, Macías-Cruz U et al. The impact of hair coat color on physiological variables, reproductive performance and milk yield of Holstein cows in a hot environment. J Therm Biol. 2019; 81: 82–88. https://doi.org/10.1016/j.jtherbio.2019.02.020.
  35. Molina R, Silva F, Perilla S, Sánchez H. Caracterización del ambiente térmico para la actividad ganadera bovina en el Valle del Cauca, Colombia. Acta Agron. 2016; 65(4):406-412. https://doi.org/10.15446/acag.v65n4.49018.
  36. Wijffels G, Sullivan M, Gaughan J. Methods to quantify heat stress in ruminants: Current status and future prospects. Methods. 2021; 186:3–13. https://doi.org/10.1016/j.ymeth.2020.09.004

Sistema OJS 3.4.0.3 - Metabiblioteca |