Skip to main navigation menu Skip to main content Skip to site footer

Effect of leachate on the growth of marine and freshwater microalgae consortia

Efecto de lixiviado sobre el crecimiento de consorcios de microalgas marinas y dulceacuícolas



How to Cite
Torres-Virviescas, M. J. ., Henao-Castro, H. A., Coulson-Reinel , J. P. ., & Tejeda-Benítez, L. P. . (2023). Effect of leachate on the growth of marine and freshwater microalgae consortia. Journal MVZ Cordoba, 28(3), e3202. https://doi.org/10.21897/rmvz.3202

Dimensions
PlumX
Martha Jeannette Torres-Virviescas
Hernán Alejandro Henao-Castro
Johana Paola Coulson-Reinel
Lesly Patricia Tejeda-Benítez

Martha Jeannette Torres-Virviescas,

Universidad del Sinú, Colombia


Hernán Alejandro Henao-Castro,

Universidad del Sinú, Cartagena, Colombia


Johana Paola Coulson-Reinel ,

Universidad de Cartagena, Cartagena, Colombia


Lesly Patricia Tejeda-Benítez,

Universidad de Cartagena, Cartagena, Colombia


Objective. This study evaluated the growth kinetics of marine and freshwater microalgae consortia in different concentrations of leachate extracted from a landfill. Materials and Methods. An experimental design was carried out for each consortium (marine Chlorella marina and Nannochloropsis oculata and freshwater Chlorella vulgaris and Ankistrodesmus falcatus) in leachate concentrations of 5%, 10%, 15%, and control (0%), with one main experiment and three replicates for each concentration (K=4), in batch culture. Results. Significant differences were found in the microalgal growth at different concentrations of leachate for both consortia (H=12.9768; p<0.05 for marine microalgae and H=20.0097; p<0.05 for freshwater microalgae), attributed to higher growth in the control sample. A significant negative correlation (p<0.01) was also found between leachate concentration growth rate and cell division. A lower growth was observed at concentrations above 5% in both consortia. Conclusions. The marine consortium generated higher cell density, which may increase the effectiveness of the pollutant bioremediation process despite the negative effect observed at higher amounts of the compound.


Article visits 169 | PDF visits


Downloads

Download data is not yet available.
  1. El Ouaer M, Turki N, Kallel A, Halaoui M, Trabelsi I, Hassen A. Recovery of landfill leachate as culture medium for two microalgae: Chlorella sp. and Scenedesmus sp. Environ Dev Sustain. 2019; 22:2651– 2671 https://doi.org/10.1007/s10668-019- 00314-7
  2. Nawas T, Rahman A, Pan S, Dixon K, Petri B, Selvaratnam T. A Review of Landfill Leachate Treatment by Microalgae: Current Status and Future Directions. Processes. 2020; 8(384). https://doi.org/10.3390/pr8040384
  3. Porto B, Gonçalves AL, Esteves AF, De Souza SMA, De Souza, AAU, Vilar VJP, et al. Assessing the potential of microalgae for nutrients removal from a landfill leachate using an innovative tubular photobioreactor. Chem Eng J. 2020. https://doi.org/10.1016/j.cej.2020.127546
  4. Carrizales LT, Panca CMA. Evaluación del impacto de la contaminación de los residuos sólidos sobre suelo y agua del botadero sanitario de Cancharani–Puno. Ñawparisun. 2020; 2(4):29-36. https://unaj.edu.pe/ revista/index.php/vpin/article/view/104
  5. Baldiris-Navarro I, Virviescas M, Aponte, J. Evaluación del uso de la microalga Chlorella vulgaris como Biorremediadora de vertimientos de la Industria Acuícola en el Caribe colombiano. Teknos. 2019; 19(1):10- 15. https://doi.org/10.25044/25392190.988
  6. Hao T B, Balamurugan S, Zhang Z H, Liu S F, Wang X, Li D W, et al. Effective Bioremediation of Tobacco Wastewater by Microalgae at Acidic PH for Synergistic Biomass and Lipid Accumulation. J. Hazard. Mater. 2022; 426:127820. https://doi. org/10.1016/j.jhazmat.2021.127820.
  7. Priya A K, Jalil A A, Vadivel S, Dutta K, Rajendran S, Fujii M, et al. Heavy metal remediation from wastewater using microalgae: Recent advances and future trends . Chemosphere . 2022; 305:135375. https://doi.org/10.1016/j. chemosphere.2022.135375
  8. Vo H N P, Ngo H H, Guo W, Liu Y, Chang S W, Nguyen D D, et al. Identification of the pollutants removal and mechanism by microalgae in saline wastewater. Bioresour Technol. 2019; 275:44-52. https://doi. org/10.1016/j.biortech.2018.12.026
  9. Sousa H, Sousa CA, Simões LC, Simões M. Microalgal-based removal of contaminants of emerging concern. J Hazard Mater. 2022; 423:127153. https://pubmed.ncbi.nlm.nih. gov/34543999/
  10. Cobos M, Estela S, Castro C, Grandez M, Tresierra A, Cabezudo C, et al. Potential of Native Microalgae from the Peruvian Amazon on the Removal of Pollutants. Progress in Microalgae Research - A Path for Shaping Sustainable Futures. IntechOpen; 2022. http://dx.doi.org/10.5772/ intechopen.105686
  11. Viegas C, Nobre C, Mota A, Vilarinho C, Gouveia L, Gonçalves, M. A circular approach for landfill leachate treatment: Chemical precipitation with biomass ash followed by bioremediation through microalgae. J Environ Chem Eng. 2021; 9(3):105187. https://doi.org/10.1016/j. jece.2021.105187
  12. Zhao X, Zhou Y, Huang S, Qiu D, Schideman L, Chai X, et al. Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production, Bioresour Technol. 2014; 156:322-328. https://doi.org/10.1016/j. biortech.2013.12.112
  13. Infante C, Angulo E, Zárate A, Florez J Z, Barrios F, Zapata C. Propagación de la microalga Chlorella sp. en cultivo por lote: cinética del crecimiento celular. Av Cien Ing. 2012; 3(2):159-164. https://www. executivebs.org/publishing.cl/avancesen-ciencias-e-ingenieria-vol-3-nro-2-ano2012-articulo-16/
  14. Ruiz-Martinez A, Martin N, Romero I, Seco A, Ferrer J. Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent. Bioresour Technol. 2012; 126:247-253. https://doi. org/10.1016/j.biortech.2012.09.022
  15. Torres M, Sánchez J. Avances del Banco de Cepas de Microalgas en el Centro Internacional Náutico Fluvial y Portuario del SENA. Rev SENNOVA, 2016; 2(1):30-41. https://revistas.sena.edu.co/index.php/ sennova/article/view/536
  16. Forero-Cujiño M A, Montengro, L C, Pinilla-Agudelo G A, Melgarejo-Muñoz L M. Immobilization of microalgae Scenedesmus ovalternus (Scenedesmaceae) and Chlorella vulgaris (Chlorellaceae) in calcium alginate beads. Acta Biol Colomb. 2016; 21(2):437- 442. https://doi.org/10.15446/abc. v21n2.51253
  17. Ramos R, Pizarro R. Crecimiento y capacidad de biorremediación de Chlorella vulgaris (Trebouxiophycea, Chlorophyta) cultivada en aguas residuales generados en el cultivo del pez dorado Seriola lalandi (Perciformes: Carangidae). Rev Biol Mar Oceanogr. . 2018; 53(1):75-86. http://dx.doi.org/10.4067/ S0718-19572018000100075
  18. Das C, Ramaiah N, Pereira E, Naseera K. Efficient bioremediation of tannery wastewater by monostrains and consortium of marine Chlorella sp. and Phormidium sp. Int J Phytoremediation. 2018; 20(3):284- 292. https://doi.org/10.1080/15226514.2 017.1374338
  19. Hu D, Zhang J, Chu R, Yin Z, Hu J, Kristianto Y, et al. Microalgae Chlorella vulgaris and Scenedesmus dimorphus co-cultivation with landfill leachate for pollutant removal and lipid production. Bioresour Technol. 2021; 342:126003. https://pubmed.ncbi.nlm.nih. gov/34571333/
  20. Coulson JP, Torres MJ, Henao-Castro A, Díaz, G X. Evaluación del potencial de cultivo de cuatro especies microalgales nativas del departamento de Bolívar, Colombia. Rev Mutis. 2022; 12(2). https://doi. org/10.21789/22561498.1821
  21. Arredondo B, Voltolina D, Zenteno T, Arce M, Gomez G. Métodos y herramientas analíticas en la evaluación de la biomasa microalgal 2da edición. La Paz: Centro de Investigaciones Biológicas del Noroeste; 2017.
  22. Mishra P, Pandey C M, Singh U, Gupta A, Sahu C, Keshri A. Descriptive statistics and normality tests for statistical data. Ann Card Anaesth. 2019; 22(1):67-72. https://doi. org/10.4103/aca.ACA_157_18
  23. Nahm F S. Nonparametric statistical tests for the continuous data: the basic concept and the practical use. Korean J Anesthesiol. 2016; 69(1):8-14. https://doi.org/10.4097/ kjae.2016.69.1.8
  24. Dinno A . Nonparametricpairwise multiple comparisons in independent g r o u p s u s i n g D u n n ’ s t e s t . S t a t a J. 2015; 15(1):292-300. https://doi. org/10.1177/1536867X1501500117
  25. Rebekić A, Lončarić Z, Petrović S, Marić S. Pearson’s or Spearman’s correlation coefficient-which one to use?. Poljoprivreda. 2015; 21(2):47-54. https://doi. org/10.18047/poljo.21.2.8
  26. Suchéras-Marx B, Escarguel G, Ferreira J, Hammer Ø. Statistical confidence intervals for relative abundances and abundancebased ratios: Simple practical solutions for an old overlooked question. Mar Micropaleontol. 2019; 151:101751. https:// doi.org/10.1016/j.marmicro.2019.101751
  27. Gonçalves A, Pires J, Simoes M. A review on the use of microalgal consortia for wastewater treatment. Algal Res. 2017; 24(B):403-415. https://doi.org/10.1016/j. algal.2016.11.008
  28. Jacome C, Ballesteros C, Rea E, Rea L, Poma P. Microalgas en el tratamiento de aguas residuales generadas en industrias de curtiembres. Cienc Tecn UTEQ. 2021; 14(2):47-55. https://doi.org/10.18779/cyt. v14i2.502
  29. Peleg M, Corradini MG, Normand MD. The logistic (Verhulst) model for sigmoid microbial growth curves revisited. Food Res Int. 2007; 40(7):808-818. https://doi. org/10.1016/j.foodres.2007.01.012
  30. Paskuliakova A, McGowan T, Tonry S, Touzet N. Microalgal bioremediation of nitrogenous compounds in landfill leachate – The importance of micronutrient balance in the treatment of leachates of variable composition. Algal Research . 2018; 32:162–171. https://doi.org/10.1016/j. algal.2018.03.010
  31. Vitola D, Pérez A, Montes D. Utilización de microalgas como alternativa para la remoción de metales pesados. RIAA. 2022; 13(1):195-203. https://doi. org/10.22490/21456453.4568 32. Baran T, Sargin I, Kaya M, Menteş A, Ceter, T. Design and application of sporopollenin microcapsule supported palladium catalyst: Remarkably high turnover frequency and reusability in catalysis of biaryls. Colloid Interface Sci. 2017; 486:194–203. https:// doi.org/10.1016/j.jcis.2016.09.071
  32. Liu X, Hong Y, Gu W. Influence of light quality on Chlorella growth, photosynthetic pigments and high-valued products accumulation in coastal saline-alkali leachate. Water Reuse. 2021; 11(2):301-311. https://doi. org/10.2166/wrd.2021.088
  33. Nambukrishnan V, Singaram J. Enhanced biodiesel production by optimizing growth conditions of Chlorella marina in tannery wastewater. Fuel. 2022; 316:123431. https:// doi.org/10.1016/j.fuel.2022.123431
  34. Shaari AL, Che Sa SN, Surif M, Zolkarnain N, Ghazali R. Growth of Marine Microalgae in Landfill Leachate and Their Ability as Pollutants Removal. Trop Life Sci Res. 2021; 32(2):133-146. https://doi.org/10.21315/ tlsr2021.32.2.9
  35. Al Dayel M F, El Sherif F. Evaluation of the effects of Chlorella vulgaris, Nannochloropsis salina, and Enterobacter cloacae on growth, yield and active compound compositions of Moringa oleifera under salinity stress. Saudi J Biol Sci. 2021; 28(3):1687–1696. https:// doi.org/10.1016/j.sjbs.2020.12.007
  36. Mitra M, Mishra S. Effect of glucose on growth and fatty acid composition of an euryhaline eustigmatophyte Nannochloropsis oceanica under mixotrophic culture condition, Bioresour. Technol. Rep. 2018; 3:147–153. https://doi.org/10.1016/j. biteb.2018.07.013
  37. Marques I M, Oliveira A C V, de Oliveira O M C, Sales E A, Moreira Í T A. A photobioreactor using Nannochloropsis oculata marine microalgae for removal of polycyclic aromatic hydrocarbons and sorption of metals in produced water. Chemosphere. 2021; 281:130775. https://doi.org/10.1016/j. chemosphere.2021.130775
  38. Hernandez-Perez A, Jabbé JI. Microalgas, cultivo y beneficios. Rev Biol Mar Oceanogr. 2014; 49(2):157-173. https://doi. org/10.4067/S0718-19572014000200001

Sistema OJS 3.4.0.3 - Metabiblioteca |