Skip to main navigation menu Skip to main content Skip to site footer

Vaccination protocols in companion animals and animal production systems in equines and bovines

Planes de vacunación en animales de compañía y sistemas de producción en equinos y bovinos



How to Cite
García-Meneses, A. M. ., Cruz-Peña, A. N. ., & Jaramillo Hernández, D. (2024). Vaccination protocols in companion animals and animal production systems in equines and bovines. Journal MVZ Cordoba, 29(3), e3364. https://doi.org/10.21897/rmvz.3364

Dimensions
PlumX

Adriana Michelle García-Meneses,

Universidad de los Llanos, Facultad de Ciencias Agropecuarias y Recursos Naturales, Escuela de Ciencias animales, Programa de Medicina Veterinaria y Zootecnia. Km 12 Vía Puerto López, Villavicencio, Colombia.


Angie Nikole Cruz-Peña,

Universidad de los Llanos, Facultad de Ciencias Agropecuarias y Recursos Naturales, Escuela de Ciencias animales, Programa de Medicina Veterinaria y Zootecnia. Km 12 Vía Puerto López, Villavicencio, Colombia.


Dumar Jaramillo Hernández,

Universidad de los Llanos, Facultad de Ciencias Agropecuarias y Recursos Naturales, Escuela de Ciencias Animales, Grupo de investigación en Farmacología experimental y Medicina interna - Élite, Villavicencio, Colombia.


Vaccination plays an essential role in preventing diseases, safeguarding the health and welfare of the population. The objective of this review is to design vaccination plans for companion animals and production systems in equines and bovines located in the state of Meta (Colombia). In felines and canines, vaccination can provide protection against possible bacterial, virulent and parasitic agents with infectious and/or zoonotic capacity and thus reduce losses in veterinary expenses associated with the treatment of sick animals. In equines, it is prophylactic against encephalomyelitis and equine influenza, avoiding animal suffering and possible economic losses; while, in bovine production, it can be highly preventive against conditions such as brucellosis and foot-and-mouth disease, which can have serious economic consequences in the industry. Therefore, it is of crucial importance to adopt a solid and clear focus on prevention through contextualized vaccination programs, in this case for the state of Meta, protecting only one health.


Article visits 192 | PDF visits


Downloads

Download data is not yet available.
  1. Paranhos da Costa MJ, Tarazona Morales AM. Abordaje práctico sobre cómo mejorar el bienestar en los bovinos. Rev Colom Cienc Pecu. 2011; 24(3):347-359. https://doi.org/10.17533/udea.rccp.324693
  2. Gizaw S, Desta H, Alemu B, Tegegne A, Wieland B. Importance of livestock diseases identified using participatory epidemiology in the highlands of Ethiopia. Trop Anim Health Prod. 2020; 52(4):1745-1757. https://doi.org/10.1007/s11250-019-02187-4
  3. Layton DS, Choudhary A, Bean AGD. Breaking the chain of zoonoses through biosecurity in livestock. Vaccine. 2017; 35(44):5967-5973. https://doi:10.1016/j.vaccine.2017.07.110
  4. Rodríguez M, Joseph S, Pfeffer M, Raghavan R, Wernery U. Immune response of horses to inactivated African horse sickness vaccines. BMC Vet Res. 2020; 16:322. https://doi.org/10.1186/s12917-020-02540-y
  5. Bergmann M, Friedl Y, Hartmann K. Passive Immunisierung bei Hund und Katze. Tierarztliche Prax Ausg K. 2016; 44(4):287-292. https://doi:10.15654/tpk-160189
  6. Lugelo A, Hampson K, Ferguson EA, Czupryna A, Bigambo M, Duamor CT, et al. Development of Dog Vaccination Strategies to Maintain Herd Immunity against Rabies. Viruses. 2022;14(4):830. https://doi.org/10.3390/v14040830
  7. Oviedo-Pastrana M, Brunal-Tachack E, Doria-Ramos M, Oviedo-Socarras T. Análisis de indicadores epidemiológicos: Brucelosis bovina en la Costa Atlántica y Antioquia - Colombia, 2005-2013. Rev MVZ Cordoba. 2017; 22(supl):6034–6043. http://doi.org/10.21897/rmvz.1073
  8. Tolosa-Quintero NJ, Loboa-Rodríguez NJ, Gutierrez-Lesmes OA, Góngora-Orjuela A. Indicador compuesto en salud: riesgo de transmisión del virus de la rabia. Rev de Salud Pública. 2018; 20(6):764–770. https://doi.org/10.15446/rsap.V20n6.74695
  9. Kappes A, Tozooneyi T, Shakil G, Railey AF, McIntyre KM, Mayberry DE, et al. Livestock health and disease economics: a scoping review of selected literature. Front Vet Sci. 2023; 10. http://doi.org/10.3389/fvets.2023.1168649
  10. Rivera AM, Sanchez-Vazquez MJ, Pituco EM, Buzanovsky LP, Martini M, Cosivi O. Advances in the eradication of foot-and-mouth disease in South America: 2011-2020. Front Vet Sci. 2023; 9:1024071. https://doi:10.3389/fvets.2022.1024071
  11. WAHIS. Sistema Mundial de Información Zoosanitaria. World Organisation for Animal Health: 2023. https://wahis.woah.org/#/event-management
  12. Sah R, Siddiq A, Al-Ahdal T, Maulud SQ, Mohanty A, Padhi BK, et al. The emerging scenario for the Eastern equine encephalitis virus and mitigation strategies to counteract this deadly mosquito-borne zoonotic virus, the cause of the most severe arboviral encephalitis in humans—an update. Front Vet Sci. 2023; 3. http://dx.doi.org/10.3389/fitd.2022.1077962
  13. Agudelo-Suárez AN, Villamil-Jiménez LC. Políticas públicas de zoonosis en Colombia, 1975-2014. Un abordaje desde la ciencia política y la salud pública. Revista de Salud Pública. 2017; 19(6):787–794 https://doi.org/10.15446/rsap.V19n6.72109
  14. Tago D, Sall B, Lancelot R, Pradel J. VacciCost – A tool to estimate the resource requirements for implementing livestock vaccination campaigns. Application to peste des petits ruminants (PPR) vaccination in Senegal. Prev Vet Med. 2017; 144:13-19. https://doi.org/10.1016/j.prevetmed.2017.05.011
  15. Tizard IR. Feline vaccines. Vaccines Vet. 2021; 167–178. https://doi.org/10.1016/B978-0-323-68299-2.00023-X
  16. Larson LJ, Schultz RD. Canine and Feline Vaccinations and Immunology. Infectious Disease Management in Animal Shelters. John Wiley & Sons; 2021. http://doi.org/10.1002/9781119294382.ch9
  17. Bergmann M, Schwertler S, Reese S, Speck S, Truyen U, Hartmann K. Respuesta de anticuerpos a la vacunación contra el virus de la panleucopenia felina en gatos adultos sanos. Revista de Medicina y Cirugía Felina. 2018; 20(12):1087-1093. https://doi.org/10.1177/1098612X1774774
  18. Bergmann, Speck, Rieger, Truyen, Hartmann. Antibody response to feline Calicivirus vaccination in healthy adult cats. Viruses. 2019; 11(8):702. http://doi.org/10.3390/v11080702
  19. Jas D, Frances-Duvert V, Brunet S, Oberli F, Guigal P-M, Poulet H. Evaluation of safety and immunogenicity of feline vaccines with reduced volume. Vaccine. 2021; 39(7):1051–1057. http://doi.org/10.1016/j.vaccine.2021.01.026
  20. Stone AE, Brummet GO, Carozza EM, Kass PH, Petersen EP, Sykes J, et al. 2020 AAHA/AAFP Feline Vaccination Guidelines. J Feline Med Surg. 2020; 22(9):813-830. https://doi:10.1177/1098612x20941784
  21. Crozet G, Rivière J, Canini L, Cliquet F, Robardet E, Dufour B. Evaluation of the worldwide occurrence of rabies in dogs and cats using a simple and homogenous framework for quantitative risk assessments of rabies reintroduction in disease-free areas through pet movements. Vet Sci. 2020; 7(4):207. http://doi.org/10.3390/vetsci7040207
  22. Scherk MA, Ford RB, Gaskell RM, Hartmann K, Hurley KF, Lappin MR, et al. 2013 AAFP Feline Vaccination Advisory Panel Report. J Feline Med Surg. 2013; 15(9):785-808. https://doi.org/10.1177/1098612X13500429
  23. Hartmann K, Day MJ, Thiry E, Lloret A, Frymus T, Addie D, et al. Feline injection-site sarcoma. J Feline Med Surg. 2015; 17(7):606-613. https://doi:10.1177/1098612x15588451
  24. Vila Nova B, Cunha E, Sepúlveda N, Oliveira M, São Braz B, Tavares L, et al. Evaluation of the humoral immune response induced by vaccination for canine distemper and parvovirus: a pilot study. BMC Vet Res. 2018; 14(1). http://doi.org/10.1186/s12917-018-1673-z
  25. Cárdenas NC, Infante GP, Pacheco DAR, Diaz JPD, Wagner DCM, Dias RA, et al. Seroprevalence of Leptospira spp infection and its risk factors among domestic dogs in Bogotá, Colombia. Vet Anim Sci. 2018; 6:64-68. https://doi.org/10.1016/j.vas.2018.08.002
  26. Escandón-Vargas K, Osorio L, Astudillo-Hernández M. Seroprevalence and factors associated with Leptospira infection in an urban district of Cali, Colombia. Cad Saude Publica. 2017; 33(5). https://doi.org/10.1590/0102-311X00039216
  27. Decaro N, Buonavoglia C, Barrs VR. Canine parvovirus vaccination and immunisation failures: Are we far from disease eradication?. Vet Microbiol. 2020; 247:108760. https://doi.org/10.1016/j.vetmic.2020.108760
  28. Wilson S, Siedek E, Thomas A, King V, Stirling C, Plevová E, et al. Influence of maternally-derived antibodies in 6-week old dogs for the efficacy of a new vaccine to protect dogs against virulent challenge with canine distemper virus, adenovirus or parvovirus. Trials Vaccinol. 2014; 3:107–113. https://doi.org/10.1016/j.trivac.2014.06.001
  29. Carreño LA, Salas D, Beltrán KB. Prevalencia de leptospirosis en Colombia: revisión sistemática de literatura. Rev Salud Pública. 2017; 19(2):204-209. https://doi.org/10.15446/rsap.v19n2.54235
  30. Gutiérrez JD, Martínez-Vega RA, Botello H, Ruiz-Herrera FJ, Arenas-López LC, Hernandez-Tellez KD. Environmental and socioeconomic determinants of leptospirosis incidence in Colombia. Cad Saude Publica. 2019; 35(3). https://doi.org/10.1590/0102-311X00118417
  31. Pérez-García J, Agudelo-Flórez P, Parra-Henao GJ, Ochoa JE, Arboleda M. Incidencia y subregistro de casos de leptospirosis diagnosticados con tres métodos diferentes en Urabá, Colombia. Biomédica. 2019; 39:150-162. https://doi.org/10.7705/biomedica.v39i0.4577
  32. Góngora A, Parra JL, Aponte LH, Gómez LA. Seroprevalencia de Leptospira spp. en grupos de población de Villavicencio, Colombia. Rev Salud Pública. 2008; 10:269-278. https://doi.org/10.1590/s0124-00642008000200007
  33. Desanti-Consoli H, Bouillon J, Chapuis RJJ. Equids’ core vaccines guidelines in North America: Considerations and prospective. Vaccines (Basel). 2022; 10(3):398. https://doi.org/10.3390/vaccines10030398
  34. Guzmán-Terán C, Calderón-Rangel A, Rodriguez-Morales A, Mattar S. Venezuelan equine encephalitis virus: the problem is not over for tropical America. Ann Clin Microbiol Antimicrob. 2020; 19(1). https://doi.org/10.1186/s12941-020-00360-4
  35. Dupuy LC, Richards MJ, Livingston BD, Hannaman D, Schmaljohn CS. A multiagent Alphavirus DNA vaccine delivered by intramuscular electroporation elicits robust and durable virus-specific immune responses in mice and rabbits and completely protects mice against lethal Venezuelan, western, and eastern equine encephalitis virus aerosol challenges. J Immunol Res. 2018; 2018:1–15. https://doi.org/10.1155/2018/8521060
  36. AAEP. Vaccinations for adult horses. American Association of Equine Practitioners; 2015. https://aaep.org/sites/default/files/Guidelines/Adult%20Vaccination%20Chart_8.12.16.pdf
  37. AAEP. Vaccinations for foals. American Association of Equine Practitioners; 2020. https://aaep.org/sites/default/files/Documents/Foal_Vaccination_Chart_FINAL_0520.pdf
  38. Donachie D, Hamilton K. Exploring innovative approaches to improving sustainable management of animal health emergencies. World Organisation for Animal Health; 2020. http://doi.org/10.20506/bull.2020.2.3141
  39. Oladunni FS, Oseni SO, Martinez-Sobrido L, Chambers TM. Equine Influenza Virus and Vaccines. Viruses. 2021; 13(8):1657. https://doi.org/10.3390/v13081657
  40. Dilai M, Piro M, Mehdi El Harrak, Stéphanie Fougerolle, Dehhaoui M, Asmaa Dikrallah, et al. Impact of Mixed Equine Influenza Vaccination on Correlate of Protection in Horses. Vaccines. 2018; 6(4):71-71. https://doi.org/10.3390/vaccines6040071
  41. Paillot R. A systematic review of recent advances in equine influenza vaccination. Vaccines (Basel). 2014; 2(4):797–831.https://doi.org/10.3390/vaccines2040797
  42. Favaro PF, Reischak D, Brandao PE, Villalobos EMC, Cunha EMS, Lara MCCSH, et al. Comparison among three different serological methods for the detection of equine influenza virus infection. Rev Sci Tech. 2017; 36(3):789–798. http://dx.doi.org/10.20506/rst.36.3.2714
  43. Cullinane A, Gahan J, Walsh C, et al. Evaluación de los protocolos actuales de vacunación contra la influenza equina antes del embarque, guiados por las normas de la OIE. Vacunas (Basilea). 2020; 8(1):107. https://doi:10.3390/vaccines8010107
  44. Paillot R, Rash N, Garrett D, Prowse-Davis L, Montesso F, Cullinane A, et al. How to meet the last OIE expert surveillance panel recommendations on equine influenza (EI) vaccine composition: A review of the process required for the recombinant canarypox-based EI vaccine. Pathogens. 2016; 5(4):64. https://doi.org/10.3390/pathogens5040064
  45. Gonzalez-Obando J, Forero JE, Zuluaga-Cabrera AM, Ruiz-Saenz J. Equine Influenza Virus: An Old Known Enemy in the Americas. Vaccines (Basel). 2022; 10(10):1718. https://doi:10.3390/vaccines10101718
  46. Paillot R, Pitel PH, Pronost S, Legrand L, Fougerolle S, Jourdan M, et al. Florida clade 1 equine influenza virus in France. Vet Rec. 2019; 184(3):101. https://doi.org/10.1136/vr.l1203
  47. Blanco-Lobo P, Rodriguez L, Reedy S, Oladunni FS, Nogales A, Murcia PR, et al. A Bivalent Live-Attenuated Vaccine for the Prevention of Equine Influenza Virus. Viruses. 2019; 11(10):933. https://doi: 10.3390/v11100933
  48. Heidary M, Dashtbin S, Ghanavati R, Mahdizade Ari M, Bostanghadiri N, Darbandi A, et al. Evaluation of brucellosis vaccines: A comprehensive review. Front Vet Sci. 2022; 9:925773. https://doi.org/10.3389/fvets.2022.925773
  49. Aida V, Pliasas VC, Neasham PJ, North JF, McWhorter KL, Glover SR, et al. Novel vaccine technologies in veterinary medicine: A herald to human medicine vaccines. Front Vet Sci. 2021; 8:654289. https://doi.org/10.3389/fvets.2021.654289
  50. Giraldo-Ramirez S, Rendon-Marin S, Ruiz-Saenz J. A concise review on certain important veterinary viruses in the Americas. Rev MVZ Cordoba. 2021; 26(2):e1965. https://doi.org/10.21897/rmvz.1965
  51. Avila-Granados LM, Garcia-Gonzalez DG, Zambrano-Varon JL, Arenas-Gamboa AM. Brucellosis in Colombia: Current status and challenges in the control of an endemic disease. Front Vet Sci. 2019; 6:321. https://doi.org/10.3389/fvets.2019.00321
  52. Dewell G, Gorden P. Beef and Dairy Cattle Vaccination Programs. 2016. https://store.extension.iastate.edu/product/14496
  53. Waldner DN, Kirkpatrick J, Lehenbauer TW. Recommended Vaccination Schedules for a Comprehensive Dairy Herd Health Program. 2017. https://extension.okstate.edu/fact-sheets/recommended-vaccination-schedules-for-a-comprehensive-dairy-herd-health-program.html
  54. BCRC. Vaccination of the Beef Herd. Beef Cattle Research Council. 2023. https://www.beefresearch.ca/topics/vaccination-of-the-beef-herd/
  55. Lu Z, Yu S, Wang W, Chen W, Wang X, Wu K, et al. Development of Foot-and-Mouth Disease Vaccines in Recent Years. Vaccines. 2022; 10(11):1817. https://doi.org/10.3390/vaccines10111817
  56. Rodriguez-Vivas RI, Trees AJ, Rosado-Aguilar JA, Villegas-Perez SL, Hodgkinson JE. Evolution of acaricide resistance: Phenotypic and genotypic changes in field populations of Rhipicephalus (Boophilus) microplus in response to pyrethroid selection pressure. Int J Parasitol. 2011; 41(8):895-903. https://doi.org/10.1016/j.ijpara.2011.03.012
  57. Jaramillo Hernández DA. Importancia de la vacunación dentro del manejo integrado de Rhipicephalus microplus en bovinos. Rev Sist Prod Agroecol. 2022; 13(1):48-63. https://doi.org/10.22579/22484817.884
  58. Suarez M, Rubi J, Pérez D, Cordova V, Salazar Y, Vielma A, et al. High impact and effectiveness of GavacTM vaccine in the national program for control of bovine ticks Rhipicephalus microplus in Venezuela. Livest Sci. 2016; 187:48–52. https://doi.org/10.1016/j.livsci.2016.02.005
  59. Zaragoza NE, Orellana CA, Moonen GA, Moutafis G, Marcellin E. Producción de vacunas para proteger a los animales contra los clostridios patógenos. Toxinas (Basilea). 2019; 11(9):525. https://doi:10.3390/toxinas11090525
  60. Lazurko MM, Erickson NEN, Campbell JR, Gow S, Waldner CL. Vaccine use in Canadian cow-calf herds and opportunities for improvement. Front Vet Sci. 2023; 10:1235942. http://doi.org/10.3389/fvets.2023.1235942

Sistema OJS 3.4.0.3 - Metabiblioteca |