Bentonite as an arsenic and lead adsorbent in the bovine digestive tract: an in vitro study
Bentonita como adsorbente de arsénico y plomo en el tracto digestivo de bovinos: estudio in vitro
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Show authors biography
Objective. To determine the recommended dose of bentonite as a chelator of arsenic (As) and lead (Pb) in the rumen, abomasal and duodenal environment by means of an in vitro system, considering the variables of ruminal fermentation and the adsorbent effect of As and Pb. Materials and Methods. Vials were prepared with 50 mL of anaerobic medium and 0.5 g of alfalfa as substrate. The culture media were added with 1.01 and 1.95 ppm of As and Pb, respectively. The treatments consisted of different levels of bentonite (B) added to the medium, B-0%, B-1.5%, B-3.0% and B-4.5%. The media were incubated for 24 h, and pH, volatile fatty acid (VFA) and N-NH3 production, in vitro DM digestibility (IVDMD) and chelating effect of bentonite were measured, simulating rumen, abomasum and duodenum conditions. A completely randomised design and orthogonal contrasts were used. Results. Bentonite did not modify the pH (p > 0.05) and the molar proportion of VFAs, but the total VFA concentration presented a negative linear effect with increasing bentonite levels. Likewise, the N-NH3 level decreased (p < 0.05) with increasing inclusion levels of bentonite. The IVDMD was reduced with B-3% and B-4.5% (52.36b and 49.74b%) in comparison to B-0% and B-1.5% (62.30a and 61.98a%). Treatments B-1.5% and B-4.5% improved (p < 0.05) As and Pb adsorption in the rumen, abomasal and duodenal environments. Conclusions. The recommended level of bentonite as chelator of As and Pb is 1.5%; doses of 4.5% affect IVDMD and, consequently, animal productivity.
Article visits 233 | PDF visits
Downloads
- Castro-González NP, Calderón-Sánchez F, Moreno-Rojas R, Moreno-Ortega A, Tamaríz-Flores JV. Health risks in rural populations due to heavy metals found in agricultural soils irrigated with wastewater in the Alto Balsas sub-basin in Tlaxcala and Puebla, Mexico. Int J Environ Health Res. 2017; 12:476-486. http://dx.doi.org/10.1080/09603123.2017.1386767
- Castro-González NP, Calderón-Sánchez F, Castro-de Jesús J, Moreno-Rojas R, Tamaríz-Flores JV, Pérez-Sato M, Soní-Guillermo E. Heavy metals in cow’s milk and cheese produced in areas irrigated with waste water in Puebla, Mexico. Food Addit Contam: Part B. 2018; 11:33-36. https://doi.org/10.1080/19393210.2017.1397060
- Covarrubias SA, Peña-Cabriales JJ. Environmental contamination by heavy metals in Mexico: problems and phytoremediation strategies. Rev Int Cont Ambien. 2017; 33:7-21. https://doi.org/10.20937/RICA.2017.33.esp01.01
- Rodríguez Fuentes H, Sánchez-Alejo E, Rodríguez-Sánchez M, Vidales-Contreras JA, Acuña-Askar K, Martínez-Turanzas G, Rodríguez-Ortíz JC. Heavy metals in raw bovine milk. Rev de la Fac Sal Púb Nutri. 2005; 6(4):1-12. https://respyn.uanl.mx/index.php/respyn/article/view/155
- Eróstegui RCP. Contaminación por metales pesados. Rev Cient Cienc Méd. 2009; 12:45-46.
- Tejeda-Tovar C, Villabona-Ortíz Á, Garcés-Jaraba L. Adsorción de metales pesados en aguas residuales usando materiales de origen biológico. Tecno Lógic. 2015; 18(34):109-123. https://doi.org/10.22430/22565337.209
- Zanin E, Scapinello J, De Olivera M, Lazarotto-Rambo C, Franscescon F, Freitas L, et al. Adsorption of heavy metals from wastewater graphic industry using clinoptilolite zeolite as adsorbent. Process Saf Environ Prot. 2017; 105:194-200. https://doi.org/10.1016/j.psep.2016.11.008
- Kraljevic-Pavelic S, Simovic-Medica J, Gumbarevic D, Filosevic A, Przulj N, Pavelic K. Critical review on zeolite clinoptilolite safety and medical applications in vivo. Front Pharmacol. 2018; 9:1-16. https://doi.org/10.3389/fphar.2018.01350
- Sánchez-Santillán P, Herrera-Pérez J, Torres-Salado N, Almaraz-Buendía I, Reyes-Vázquez I, Rojas AR, Gómez-Trinidad M, Contreras-Ramírez EO, Maldonado-Peralta MA, Magadán-Olmedo F. Chemical composition, and in vitro fermentation of ripe mango silage with molasses. Agroforest Syst. 2020; 94:1511-1519. https://doi.org/10.1007/s10457-019-00442-z
- Cobos-Peralta MA, Curzaynz-Leyva K, Rivas-Martínez R, Santillán-Gómez MI, Bárcena-Gama JR. In vitro effect of diets for growing lambs supplemented with dried distillers grains on rumen fermentation and gas emissions. Agrociencia. 2018.52(2): 203–215. https://agrociencia-colpos.org/index.php/agrociencia/article/view/1663
- McCullough H. The determination of ammonia in whole blood by a direct colorimetric method. Clin Chim Acta. 1967; 17(2):297–304. https://doi.org/10.1016/0009-8981(67)90133-7
- Rojas-García AR, Hernández-Ayona A, Sánchez-Santillán P, Alaniz-Gutierrez L, Torres-Salado N, Herrera-Pérez J, Escobar-España JC. Cinética de fermentación y degradación in vitro de tres leguminosas rastreras nativas del municipio de Cuajinicuilapa, Guerrero. Rev Investig Vet Perú. 2018; 29(4):1229-1236. http://dx.doi.org/10.15381/rivep.v29i4.14340
- SAS Institute, SAS User’s Guide: Statistics Version 9.2. Statistical Analysis System Institute Cary, North Carolina, 2010; USA.
- Kordi M, Naserian AA, Samadia, F. The influence of adding polyethylene glicol and activated sodium bentonite on the performance, blood parameters, and muscle mineral content of saanen goats fed pistachio byproducts. Ir J Apl Anim Sci. 2022; 12(2):303-313. https://ijas.rasht.iau.ir/article_691846_938568bb67fa9267278e780e3a010be8.pdf
- Mohsen K, Sirjani MK, Tahmasbi AM, Khoram Abadi EI, Torbaghan AE. Effects of sodium and calcium bentonite on growth performance and rumen ammonia in Holstein bulls. Lives Res Rural Develop 2017; 29(8):1-10. https://lrrd.cipav.org.co/lrrd29/8/phd29144.html
- El-Nile EA, Elazab AM, Soltan AY, Elkomy EA, El-Zaiat MH, Sallam MAS, El-Azrak EK. Nano and natural zeolite feed supplements for dairy goats: Feed intake, ruminal fermentation, blood metabolites, and milk yield and fatty acids profile. Anim Feed Sci Technol. 2023; 295:115522. https://doi.org/10.1016/j.anifeedsci.2022.115522
- Roque-Jiménez JA, Pinos-Rodríguez JM, Rojo-Rubio R, Mendoza GD, Vázquez A, Cayetano de Jesús JA, Lee-Ranel HA. Effect of natural zeolite on live weight changes, urinal fermentation and nitrogen metabolism of ewe lambs. S Afr J Anim. 2018; 48(6):1148-1155. http://dx.doi.org/10.4314/sajas.v48i6.19
- Ghoneem WM, El-Tanany RR, Mahmoud AE. Effect of natural zeolite as a rumen buffer on growth performance and nitrogen utilization of barki lambs. Pakistan J. Zool 2022; 54(3):1199-1207. https://dx.doi.org/10.17582/journal.pjz/20191207121206
- Sulzberger SA, Kalebich CC, Melnichenco S, Cardoso FC. Effects of clay after a grain chalennge on milk composition and on ruminal, blood and fecal pH in Holstein cows. J Dairy Sci. 2016; 99(10): 8028-8040. https://dx.doi.org/10.3168/jds.2016-11030
- Urías-Estrada JD, López-Soto MA, Barreras A, Aguilar-Hernández JA, González-Vizcarra VM, Estrada-Angulo A, Zinn RA, Mendoza GD, Plascencia A. Influence of zeolite (clinoptilolite) supplementation on characteristics of digestion and ruminal fermentation of steers fed a steam-flaked corn-based finishing diet. Anim Prod Sci. 2018; 58(7):1239-1245. http://dx.doi.org/10.1071/AN16128
- Sutton JD, Dhanoa MS, Morant SV, France J, Napper DJ, Schuller E. Rates of production of acetate, propionate, and butyrate in the rumen of lactating dairy cows given normal and low-roughage diets. J Dairy Sci. 2003; 86(11):3620-3633. https://doi.org/10.3168/jds.S0022-0302(03)73968-X
- Goodarzi M, Nanekarani S. The effect of calcic and potassic clinoptilolite on ruminal parameters in Lori breed sheep. ICAAA 2012; 23(4):140-145. https://dx.doi.org/10.1016/j.apcbee.2012.11.024
- Amanzougarene Z, Fondevila M. Rumen Fermentation of feed mixtures supplemented with clay minerals in a semicontinuous in vitro system. Animals. 2022; 12:345-356. https://doi.org/10.3390/ani12030345
- Elitok B, Guvlu S. Investigation on effects of orally given sepiolite on ruminal protozoa in cattle. J Harmoniz Res Med and Hlth Sci. 2017; 4(4):163-173. https://doi.org/10.3168/jds.S0022-0302(03)73968-X
- Kazemi M, Eskandary T, Tahmsabi AM, Valizadeh R, Naserian AA. Effects of phosalone consumption feeding with or without sodium bentonite on performance, blood metabolites and its transition to milk of Iranian Baluchi sheep. J Animal Sci Technol. 2017; 59(10):1-11. https://doi.org/10.1186/s40781-017-0135-7
- Tánori-Lozano A, Montalvo-Corral M, Pinelli-Saavedra A, Valenzuela-Melendres M, Zamorano-García L, Dávila-Ramírez JL, González-Ríos H. Inclusión dietaria de clinoptilolita como aditivo en la producción de rumiantes. Revista Biotecnia. 2022; 25(1):51-60. http://dx.doi.org/10.18633/biotecnia.v25i1.1759
- Gutiérrez O, Galindo J, Oramas A, Cairo J. Effect of bentonite and zeolite supplementation on the protection of rumen protein. In vivo studies. Rev Cubana Cienc Agric. 2008; 42(3):259-261.
- Smelcerovic M. Adsorption of ammonia by base activated bentonite clay kinetic and equilibrium studies. Knowl Int J. 2018; 28(4):1251-1257. https://doi.org/10.35120/kij28041251M
- Sharmaa P, Sutara PP, Xiaob H, Zhangc Q. The untapped potential of zeolites in techno-augmentation of the biomaterials and food industrial processing operations: a review. J Future Foods. 2023. 3-2: 127–141. https://doi.org/10.1016/j.jfutfo.2022.12.004
- Días J, Huelvan C, Dinis MT, Metailler R. Influence of dietary bulk agents (silica, cellulose and natural zeolite) on protein digestibility, growth, feed intake and feed transit time in European seabass (Dicentrarchus zabrax) juveniles. Aquat Living Resour 1998; 11(4):219-226. https://doi.org/10.1016/S0990-7440(98)89004-9
- Ghaemnia L, Bojarpour M, Mirzadeh K, Chaji M, Eslami M. Effects of different levels of zeolite on digestibility and some blood parameters in arabic lambs. J Anim Vety Adv. 2010; 9(4):779-781. https://doi.org/10.3923/javaa.2010.779.781
- Johnson MA, Sweeny TF, Muller LD. Effects of feeding synthetic zeolite A and sodium bicarbonate on milk production nutrient digestion, and rate of digesta passage in dairy cows. J Dairy Sci. 1988; 71:946-953. https://doi.org/10.3168/jds.S0022-0302(88)79640-X
- Jugdaohsingh R, Anderson SH, Tucker KL, Elliott H, Kiel DP, Thompson RP, Powell JJ. Dietary silicon intake and absorption. Ame J Clin Nutr. 2002; 75(5):887–893. https://doi.org/10.1093/ajcn/75.5.887
- Dzagurov B, Eremenko VI, Karlov AG, Payukhina MA, Suvorova VN. The effect of bentonite feeding for young cattle on the exchange of nitrogen, mineral elements and the digestibility of diet nutrients. E3S Web Conf. 2021; 254:1-6. https://doi.org/10.1051/e3sconf/202125408028
- Mejía-Zamudio F, Valenzuela-García J, Aguayo-Salinas S, Meza-Figueroa D. Arsenic adsorption of natural zeolite pretrated with magnesium oxides. Rev Int Contam Ambie. 2009; 25(4):217-227.
- Carbonel-Ramos, D. Adsorption of cadmium, copper and lead with natural and modified bentonite, kaolin and natural zeolites: a review of process parameters, isotherms and kinetics. Ingeniería. 2018; 23(3):252-273. https://doi.org/10.14483/23448393.13418
- Hussain ST, Ali SA K. Removal of heavy metal by ion exchange using bentonite clay. J Ecol Eng. 2021; 22(1):104-111. https://doi.org/10.12911/22998993/128865
- Lazarus M, Orct T, Blanusa M, Vickovic I, Sostanic B. Toxic and essential metal concentrations in four tissues of red deer (Cervus elaphus) from Baranja, Croatia. Food Addit Contam Part A. 2008; 25(3):270-283. https://doi.org/ 10.1080/02652030701364923
- Mandal P. An insight of environmental contamination of arsenic on animal health. Emerg Contam. 2017; 3:17-22. http://dx.doi.org/10.1016/j.emcon.2017.01.004
- Lashkari S, Haibian M, Jensen SK. A Review on the role of chromium supplementation in ruminant nutrition—effects on productive performance, blood metabolites, antioxidant status, and immunocompetence. Biol Trace Elem Res. 2018; 186(2):305-321. https://doi.org/10.1007/s12011-018-1310-5