Skip to main navigation menu Skip to main content Skip to site footer

Evaluation of the nutritive value of sugarcane residues inoculated with fungus Fomes sp

Evaluation of the nutritive value of sugarcane residues inoculated with fungus Fomes sp



Open | Download

How to Cite
Olivera D, A., Aranda I, E., Ramos J, J., Vargas V, L., Zaldivar C, J., & Mendoza M, G. (2014). Evaluation of the nutritive value of sugarcane residues inoculated with fungus Fomes sp. Journal MVZ Cordoba, 19(2), 4047-4058. https://doi.org/10.21897/rmvz.99

Dimensions
PlumX
Alex Olivera D
Emilio Aranda I
Jesus Ramos J
Luis Vargas V
Juan Zaldivar C
German Mendoza M

ABSTRACT

Objective. Improve the nutritional value of mechanized sugarcane residues inoculating the fungus Fomes sp. EUM1. Materials and methods. The fungus Fomes was inoculated according to a 0, 0.1, 0.2, and 0.3% (w/v) treatment and incubated at a temperature of 35°C for 7, 10 and 13 days. It was obtained DM, OM, CP, ash, NDF and ADF and the effective degradation of DM, NDF and ADF, with an experimental factorial design of 3X3 and a completely randomized design. The factors were growing days in an Erlenmeyer flask (7, 10, and 13) and inoculum percentage (0.1, 0.2 and 0.3). The data were analyzed with the SAS statistical package. Results. Statistical significance was found in the interaction of the fungus growing days by percentage of inoculum, in the variables: DM, CP and pH. The NDF and ADF factor differed in the percentage of inoculum. Effective degradation showed significant for the same type of interaction in all the variables studied. Conclusions. The inoculation of the fungus increased ADF degradation by only 0.2% of the inoculum percentage, without any effect on effective degradation due to the use of soluble fractions at the beginning of the incubation. It is considered that the degradation occurs in stages that are important to consider for determining treatments to maximize the beneficial effects of the fungus in terms of ruminant nutrition.


Article visits 685 | PDF visits


Downloads

Download data is not yet available.
  1. Sistema Integral de Información Agroalimentaria y Pesquera [en línea]. 2011. (acceso noviembre del 2013). URL Disponible en: http://www.siap.gob.mx/index.php?option=com_wrapper&view=wrapper&Itemid=351.
  2. Lal R. Soil quality impacts of residue removal for bioethanol production. Soil Tillage Res 2009; 102:233-241. http://dx.doi.org/10.1016/j.still.2008.07.003
  3. Aranda EM, Ruiz P, Mendoza GD, Marcoff CF, Ramos JA, Elías A. Cambios en la digestión de tres variedades de ca-a de azúcar y sus fracciones de fibra. Rev Cubana Cienc Agric 2004; 38:137-144.
  4. Fernandez JA, Henao JM, Pedrosa AM, Quevedo B. Inmovilización de hongos ligninoliticos para la remoción de colorantes negro reactivos. Rev Colomb Biotechnol 2009; 11:59-72.
  5. Krishna C. Solid state fermentation systems: An overview. Crit Rev Biotechnol 2005; 25:1–30. http://dx.doi.org/10.1080/07388550590925383
  6. Arora DK, Bridge DP, Bhatnagar D. Handbook of Fungal Biotechnology. New York: CRC Press; 2004.
  7. Peláez AA, Meneses M, Miranda RL, Megias RM, Barcena GR, Loera O. Ventajas de la fermentación sólida con Pleurotus sapidus en ensilaje de ca-a de azúcar. Arch Zootec 2008; 57:25-33.
  8. Ordaz A, Favela E, Meneses M, Mendoza G, Loera O. Hyphal morphology modification in the thermal adaptation by the white rot fungus Fomes sp. EUM1. J Basic Microbiol 2011;52:167–174. http://dx.doi.org/10.1002/jobm.201000528
  9. Pal M, Calvo AM, Terrón MC, González AE. Solid-state fermentation of sugarcane bagasse with Flammulina velutipes and Trametes versicolor. J Microbiol Biotechnol 1995; 11:541-545. http://dx.doi.org/10.1007/BF00286370
  10. Sánchez A, Ysunza F, Beltrán M, Esqueda M. Cultivo del hongo comestible Pleurotus sobre residuos vitivinícolas y su manejo pos cosecha. [Tesis de Maestría]. Hermosillo, México: Universidad de Sonora; 2005.
  11. Peláez A, Meneses M, Miranda A, Ayala M, Crosby M, Loera O et al. Enzimas fibrolíticas producidas por fermentación en estado sólido para mejorar los ensilajes de ca-a de azúcar. Agrociencia 2011; 45:675-685.
  12. O.A.C. Official Methods of Analysis (18th Ed). Washington D.C.: O.A.C International; 2005.
  13. Van Soest PJ, Robertson JP, Lewis BA. Symposium: Carbohydrate methodology, metabolism and nutritional implications in dairy caltle. J Dairy Sci 1991; 74:3583-3597. http://dx.doi.org/10.3168/jds.S0022-0302(91)78551-2
  14. Noguera RR, Posada SL. Modelación de la cinética de degradación de alimentos para rumiantes. Rev Col Cienc Pec 2007; 20:174-182.
  15. Berkeley Madonna (programa de computadora). Versión 8.0. Berkeley: University of California; 2000.
  16. Steel GDR, Torrie HJ, Dickey DA. Principles and procedures of statistics a biometrical approach. 3ra Ed. Michigan, USA: McGraw Hill Companies, Inc; 1997.
  17. SAS/STAT® (programa de computadora). Versión 9.3. SAS Institute Inc; 2013.
  18. Vali-o EC, Elías A, Torres V, Carrasco T, Albelo N. Mejoramiento de la composición del bagazo de ca-a de azúcar por la cepa Trichoderma viride M5-2 en un biorreactor de fermentación en estado sólido. Rev Cubana Cienc Agric 2004; 38:145-153.
  19. García Y, Ibarra A, Vali-o EC, Dustet JC, Oramas A, Albelo N. Estudio de un sistema de fermentación sólida con agitación en la biotransformación del bagazo de ca-a de azúcar por la cepa Trichoderma viride M5-2. Rev Cubana Cienc Agric 2002; 36:265-270.
  20. Arce O. Producción de extractos de enzimáticos a partir de Formes sp EUM1 y su evaluación en condiciones ruminales. [Tesis de Doctorado]. México: Universidad Autónoma Metropolitana, Unidad Iztapalapa; 2012.
  21. Arias GM, Bueno G, Betancourt D, álvarez I, González AL. Biotransformación de Residuos Lignocelulósicos con Hongos Pleurotus. Rev CENIC Cienc Biol 2005; 36:1-7.
  22. Akinfemi A, Ogunnwole OA, Lapido MK, Adu OA, Osineye OMES. Enhancement of the nutritive value of maize leaf treated with white-rot fungi: Pleurotus sajorcaju and Pleurotus pulmonarius, and the effects on chemical composition and In vitro digestibility. Prod Agric Technol 2009; 1:106-110.
  23. Salcedo M, López J, Flores P. Evaluación de enzimas para la hidrólisis de residuos (hojas y cogollos) de la cosecha ca-a de azúcar. Dyna 2010; 78:182-190.
  24. Yan H, Son Y, Beauchemin KA. Effects of exogenous enzymes on ruminal fermentation and degradability of alfalfa hay and rice straw. Asian-Aust J Anim Sci 2011; 24:56-64.
  25. Giraldo LA, Carro MD, Ranilla MJ, Tejido ML. Influence of fibrolytic enzymes on In vitro methane production and rumen fermentation of a substrate containing 60% of grass hay. Livestock Research for Rural Development [en línea] 2007 (acceso 15 de noviembre del 2013); 19:Article 185. URL disponible en: http://www.lrrd.org/lrrd19/12/gira19185.htm
  26. Membrillo I, Sánchez C, Meneses M, Favela E, Loera O. Particle geometry affects differentially substrate composition and enzyme profiles by Pleurotus ostreatus growing on sugar cane bagasse. J Microbiol Biotechnol 2010; 2:1581-1586.
  27. Pinos J, González S, Mendoza G, Bárcena R, Cobos M. Efecto de enzimas fibroliticas exógenas en la digestibilidad In vitro de la pared celular de heno de alfalfa (Medicago sativa) o de ballico (Lolium perenne). Interciencia 2002; 27:28-32.
  28. Miranda RLA, Mendoza MGD, Bárcena-Gama JR, González MSS, Ferrara R, Ortega CME et al. Effect of Saccharomyces cerevisiae or Aspergillus oryzae cultures and NDF level on parameters of ruminal fermentation. Anim Feed Sci Technol 1996; 63:289-296. http://dx.doi.org/10.1016/S0377-8401(96)01008-5

Sistema OJS 3.4.0.3 - Metabiblioteca |