Skip to main navigation menu Skip to main content Skip to site footer

Genetic parameters for growth and reproduction in Simmental cattle from pedigree and genomic relationship

Parámetros genéticos para crecimiento y reproducción en ganado Simmental mediante parentesco por pedigrí y genómico



How to Cite
Amaya-Martínez, A. A., Martínez S., R., & Cerón-Muñoz, M. F. (2020). Genetic parameters for growth and reproduction in Simmental cattle from pedigree and genomic relationship. Journal MVZ Cordoba, 25(1), 1520. https://doi.org/10.21897/rmvz.1520

Dimensions
PlumX
Adonai Alejandro Amaya-Martínez
Rodrigo Martínez S.
Mario Fernando Cerón-Muñoz

Adonai Alejandro Amaya-Martínez,

Zootecnista, Profesor UDCA, integrante grupo GaMMA


Rodrigo Martínez S.,

Zootecnista, MSc PhD, investigador Agrosavia


Mario Fernando Cerón-Muñoz,

Coordinador grupo GaMMA, profesor titular, Zootecnista MSc, PhD, Facultad de Ciencias Agrarias.


Objective. To estimate genetic parameters for weight at eight months of age (W8M), age at first calving (AFC) and first calving interval (FCI) using pedigree and genomic relationship. Materials and methods. Phenotypic data on 481, 3063 and 1098 animals for W8M, AFC and FCI were used, respectively. The genomic information came from a population of 718 genotyped animals with a density chip of 30,106 single nucleotide polymorphism markers (SNP). Univariate and bivariate models were used under the conventional (BLUP) and single step genomic best linear unbiased predictor (ssGBLUP) methodologies. Results. The heritabilities for W8M, AFC and FCI ranged from 0.25 to 0.26, from 0.20 to 0.22 and from 0.04 to 0.08, respectively. The AFC and FCI models under ssGBLUP slightly decreased the error and increased the additive genetic variance, respectively. Conclusions. The inclusion of genomic information slightly increases the accuracy of the genetic estimates in this population. However, a larger amount of genotyped animals and with a higher genetic relationship connectivity would allow breeders to increase the potential of the ssGBLUP methodology in Colombian Simmental cattle.


Article visits 2023 | PDF visits


Downloads

Download data is not yet available.
  1. Rezende F, Ferraz J, Eler J, Silva R, Mattos E, Ibáñez-Escriche N. Study of using marker assisted selection on a beef cattle breeding program by model comparison. Livest Sci. 2012; 147(1-3):40–48. https://doi.org/10.1016/j.livsci.2012.03.017
  2. Ryu J, Lee C. Genomic Heritability of Bovine Growth Using a Mixed Model. Asian-Australas J Anim Sci. 2014; 27(11):1521-1525. https://dx.doi.org/10.5713%2Fajas.2014.14287
  3. Chin-Colli R, Estrada-León R, Magaña-Monforte J, Segura-Correa J, Nuñez-Domínguez R. Genetics parameters for growth and reproductive traits of Brown Swiss cattle from Mexico. Ecosistemas y Recursos Agropecuarios. 2016; 3(7):11–20. https://dialnet.unirioja.es/servlet/articulo?codigo=5918056
  4. Vergara O, Elzo M, Cerón-Muñoz M. Genetic parameters and genetic trends for age at first calving and calving interval in an Angus-Blanco Orejinegro-Zebu multibreed cattle population in Colombia. Livest. Sci. 2009; 126(1-3):318-322. https://doi.org/10.1016/j.livsci.2009.07.009
  5. Jenko J, Wiggans G, Cooper T, Eaglen S, Luff W, Bichard M et al. Cow genotyping strategies for genomic selection in a small dairy 6. cattle population. J Dairy Sci. 2017; 100(1):439-452. https://doi.org/10.3168/jds.2016-11479
  6. Muir W. Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters. J Anim Breed Genet. 2007; 124(6):342–355. https://doi.org/10.1111/j.1439-0388.2007.00700.x
  7. Loberg A, Dürr J, Fikse W, Jorjani H, Crooks L. Estimates of genetic variance and variance of predicted genetic merits using pedigree or genomic relationship matrices in six Brown Swiss cattle populations for different traits. J Anim Breed Genet. 2015; 132(5):376–385. https://doi.org/10.1111/jbg.12142
  8. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: A tool set for whole-genome association and population-based linkage. Am J Hum Genetic 2007; 81(3):559-575. https://doi.org/10.1086/519795
  9. Aguilar I, Misztal I, Johnson D, Legarra A, Tsuruta S, Lawlor T. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci. 2010; 93(2):743–752. https://doi.org/10.3168/jds.2009-2730
  10. Misztal I, Tsuruta S, Lourenco D, Masuda Y, Aguilar I, Legarra A et al. Manual for BLUPF90 family of programs. University of Georgia; Athens, USA; 2018. http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all2.pdf
  11. Montes D, Vergara O, Prieto E, Rodriguez, A. Estimation of genetic parameters to determine the birth and weaning weight in Brahman bovines. Rev MVZ Córdoba. 2008; 13(1):1184-1191. https://doi.org/10.21897/rmvz.409
  12. Segura-Correa J, Chin-Colli R, Magaña-Monforte J, Núñez-Domínguez R. Genetic parameters for birth weight, weaning weight and age at first calving in Brown Swiss cattle in Mexico. Trop Anim Health Prod. 2012; 44(2):337–341. https://doi.org/10.1007/s11250-011-0026-8
  13. Cerón-Muñoz M, Tonhati H, Costa C, Maldonado-Estrada J, Rojas-Sarmiento D. Genotype × Environment Interaction for Age at First Calving in Brazilian and Colombian Holsteins. J Dairy Sci. 2004; 87(8):2455–2458. https://doi.org/10.3168/jds.S0022-0302(04)73369-X
  14. Brzáková M, Svitáková A, Veselá Z, Cítek J. Genetic parameters for first calving interval in beef cattle. Acta fytotechn Zootechn. 2016; 19(1):22–24. http://www.acta.fapz.uniag.sk/journal/index.php/on_line/article/view/279
  15. Guillen A, Guerra D, Ávila N, Palacios A, Ortega R, Espinoza J. Parámetros y tendencias genéticas del peso al destete y a los 18 meses de edad en ganado Cebú bermejo de Cuba. Rev Mex Cienc Pecu. 2012; 3(1):19-31. https://cienciaspecuarias.inifap.gob.mx/index.php/Pecuarias/article/download/1246/1241
  16. Torres-Vásquez J, Spangler M. Genetic parameters for docility, weaning weight, yearling weight, and intramuscular fat percentage in Hereford cattle. J Anim Sci. 2016; 94(1):21–27. https://doi.org/10.2527/jas.2015-9566
  17. Kebede D, Komlosi I. Evaluation of genetic parameters and growth traits of Hungarian Simmental cattle breed. Livest Res Rural Dev. 2015; 27(9). http://www.lrrd.org/lrrd27/9/dami27172.html
  18. Marques L, Koetz C, Mozaquatro V, Favaro M, Jardim J, Azambuja E. Genetic parameters of age at first calving, weight gain, and visual scores in Nelore heifers. R Bras Zootec. 2017; 46(4):303-308. http://dx.doi.org/10.1590/S1806-92902017000400005
  19. Ayalew W, Aliy M, Negussie E. Estimation of genetic parameters of the productive and reproductive traits in Ethiopian Holstein using multi-trait models. Asian-Australas J Anim Sci. 2017; 30(11):1550–1556. http://dx.doi.org/10.5713/ajas.17.0198
  20. Torshizi E. Effects of season and age at first calving on genetic and phenotypic characteristics of lactation curve parameters in Holstein cows. J Anim Sci Technol. 2016; 58(8). https://dx.doi.org/10.1186%2Fs40781-016-0089-1
  21. Rocha J, Gallego J, Vásquez R, Pedraza J, Echeverri J, Cerón-Muñoz M et al. Estimation of genetic parameters for age at first calving and calving interval in Blanco Orejinegro (BON) breed cattle populations in Colombia. Rev Colomb Cienc Pecu. 2012; 25(2):220–228. http://aprendeenlinea.udea.edu.co/revistas/index.php/rccp/article/view/324749
  22. Gutiérrez J, Alvarez I, Fernández I, Royo L, Díez J, Goyache F. Genetic relationships between calving date, calving interval, age at first calving and type traits in beef cattle. Livest Prod Sci. 2002; 78(3):215–222. https://doi.org/10.1016/S0301-6226(02)00100-8
  23. Buzanskas M, Pires P, Chud T, Bernardes P, Rola L, Savegnago R et al. Parameter estimates for reproductive and carcass traits in Nelore beef cattle. Theriogenology. 2017; 92(1):204–209. https://doi.org/10.1016/j.theriogenology.2016.09.057
  24. Haile-Mariam M, Nieuwhof G, Beard K, Konstatinov K, Hayes B. Comparison of heritabilities of dairy traits in Australian Holstein-Friesian cattle from genomic and pedigree data and implications for genomic evaluations. J Anim Breed Genet. 2013; 130(1):20-31. https://doi.org/10.1111/j.1439-0388.2013.01001.x
  25. Mostert B, Westhuizen R, Theron H. Calving interval genetic parameters and trends for dairy breeds in South Africa. S Afr J Anim Sci. 2010; 40(2):156-162. http://dx.doi.org/10.4314/sajas.v40i2.57288
  26. Haile-Mariam M, Price J. Variances and correlations of milk production, fertility, longevity, and type traits over time in Australian Holstein cattle. J Dairy Sci. 2015; 98(10):7364-7379. https://doi.org/10.3168/jds.2015-9537
  27. Guo G, Zhao F, Wang Y, Zhang Y, Du L, Su G. Comparison of single-trait and multiple-trait genomic prediction models. BMC Genet. 2014; 15(30). https://doi.org/10.1186/1471-2156-15-30
  28. Christensen O, Lund M. Genomic prediction when some animals are not genotyped. Genet Sel Evol. 2010; 42(2). https://doi.org/10.1186/1297-9686-42-2
  29. Hutchison J, VanRaden P, Null D, Cole J, Bickhart D. Genomic evaluation of age at first calving. J Dairy Sci. 2017; 100(8):6853-6861. https://doi.org/10.3168/jds.2016-12060
  30. Heise J, Stock K, Reinhardt F, Ha N, Simianer H. Phenotypic and genetic relationships between age at first calving, its component traits, and survival of heifers up to second calving. J Dairy Sci. 2018; 101(1):425-432. https://doi.org/10.3168/jds.2017-12957

Sistema OJS 3.4.0.3 - Metabiblioteca |