Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Total mercury concentrations in fish from Urrá reservoir (Sinú river, Colombia). Six years of monitoring

Total mercury concentrations in fish from Urrá reservoir (Sinú river, Colombia). Six years of monitoring



Abrir | Descargar

Cómo citar
Marrugo-Negrete, J., Navarro-Frómeta A., & Ruiz-Guzmán J. (2015). Total mercury concentrations in fish from Urrá reservoir (Sinú river, Colombia). Six years of monitoring. Revista MVZ Córdoba, 20(3), 4754-4765. https://doi.org/10.21897/rmvz.45

Dimensions
PlumX
José Marrugo-Negrete
Amado Navarro-Frómeta
Javier Ruiz-Guzmán

ABSTRACT

Objective. The aim of this study was to monitor the total mercury (T-Hg) concentrations in fish from the Urrá reservoir, after impoundment. Materials and methods. Five fish species at different trophic levels were sampled from 2004 to 2009 and analyzed by cold-vapor atomic absorption spectroscopy for T-Hg concentrations in muscle tissue. Water quality parameters were evaluated. Results. The highest (1.39±0.69 μg/g ww) and lowest (0.15±0.02 μg/g ww) T-Hg concentrations were detected in Hoplias malabaricus (piscivorous) and Cyphocharax magdalenae (iliophagous/detritivorous) respectively, whereas Leporinus muyscorum (omnivorous) had an intermediate level (0.40±0.11 μg/g ww). The organic matter content in the water increased with time and depth, whereas dissolved oxygen and pH decreased. A covariance analysis (with fish length as a covariate) shows a steady increase of T-Hg levels in all the studied species after impoundment. Conclusions. The T-Hg concentrations in the evaluated fish species, increased after impoundment. The water quality variables showed conditions favoring Hg methylation and its biomagnification, this last was evident in the fish food chain of the reservoir.


Visitas del artículo 1211 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Guzzi G, La Porta C. Molecular mechanisms triggered by mercury. Toxicol 2008; 244(1): 1–12. http://dx.doi.org/10.1016/j.tox.2007.11.002
  2. United Nations Environment Programme. Global mercury assessment 2013. Sources, emissions, releases and environmental transport. Geneva: UNEP Chemicals Branch; 2013. (En línea, accesado 5 Mayo 2014). URL disponible en: http://www.unep.org/PDF/PressReleases /GlobalMercuryAssessment2013.pdf.
  3. Pottinger L. World rivers review. [Online] International rivers 2010; 25(2):1-16. URL available in: http://www.internationalrivers.org/files/attached-files/wrr_june_2010.pdf
  4. St. Louis VL, Rudd JWM, Kelly CA, Bodaly RA, Paterson MJ, Beaty KG et al. The rise and fall of mercury methylation in an experimental reservoir. Environ Sci Technol 2004; 38(1): 1348–1358. http://dx.doi.org/10.1021/es034424f
  5. Hylander L, Gröhn J, Tropp M, Vikström A, Wolpher H, De Castro e Silva E. Fish mercury increase in Lago Manso, a new hydroelectric reservoir in tropical Brazil. J Environ Manage 2006; 81(2): 155–166. http://dx.doi.org/10.1016/j.jenvman.2005.09.025
  6. Tuomola L, Niklasson T, de Castro e Silva E, Hylander L. Fish mercury development in relation to abiotic characteristics and carbon sources in a six-year-old, Brazilian reservoir. Sci Total Environ 2008; 390(1): 177–187. http://dx.doi.org/10.1016/j.scitotenv.2007.09.030
  7. Hall B, Cherewyk K, Paterson M, Bodaly R. Changes in methyl mercury concentrations in zooplankton from four experimental reservoirs with differing amounts of carbon in the flooded catchments. Can J Fish Aquat Sci 2009; 66(11): 1910–1919.
  8. http://dx.doi.org/10.1139/F09-123
  9. Ullrich S, Tanton T, Abdrashitova S. Mercury in the aquatic environment: A review of factors affecting methylation. Crit Rev Environ Sci Technol 2001; 31(3):241-293.
  10. http://dx.doi.org/10.1080/20016491089226
  11. Marrugo-Negrete J, Olivero J, Lans E, Benitez L. Total mercury and methylmercury concentrations in fish from the Mojana region of Colombia. Environ Geochem Health 2008a; 30(1): 21–30.
  12. http://dx.doi.org/10.1007/s10653-007-9104-2
  13. Marrugo J, Lans E, Benítez L. Hallazgo de mercurio en peces de la Ciénaga de Ayapel, Córdoba, Colombia. Rev MVZ Córdoba 2007; 12(1):878-886.
  14. Olivero-Verbel J, Johnson-Restrepo B, Mendoza-Marín C, Paz-Martinez R, Olivero-Verbel R. Mercury in the aquatic environment of the Village of Caimito at the Mojana Region, North of Colombia. Water Air Soil Pollut 2004; 159(1): 409-420.
  15. http://dx.doi.org/10.1023/B:WATE.0000049162.54404.76
  16. Unidad de Planeación Minero Energética UPME. Reporte mensual de generación hidroeléctrica por embalse. Enero 2014. UPM; 2014. (En línea, accesado 25 Septiembre 2014). URL disponible en: http://www.upme.gov.co/Reports/Default.aspx?ReportPath=%2fSIEL+UPME%2fGeneraci%C3%B3n%2fEmbalses+(SIN).
  17. Unidad de Planeación Minero Energética UPME. Plan de expansión de referencia generación – transmisión 2010-2024. Bogotá DC.: UPM; 2010a. (En línea, accesado 16 Octubre 2011). URL disponible en: http://www.upme.gov.co/Docs/Plan_Expansion/2010/Plan_Expansion_2010-2024_Definitivo.pdf.
  18. Marrugo-Negrete JL, Ruiz-Guzmán JA, Díez S. Relationship between mercury levels in hair and fish consumption in a population living near a hydroelectric tropical dam. Biol Trace Elem Res 2013; 151(2): 187–194. http://dx.doi.org/10.1007/s12011-012-9561-z
  19. Ruiz-Guzmán JA, Marrugo-Negrete JL, Díez S. Human exposure to mercury through fish consumption: Risk assessment of riverside inhabitants of the Urrá reservoir, Colombia. Hum Ecol Risk Assess 2014; 20(5): 1151 – 1163. http://dx.doi.org/10.1080/10807039.2013.862068
  20. Valderrama M, Salas F, Solano D. Los peces y las pesquerías en el embalse de Urrá 2001 – 2005. Montería: Fundación bosques y humedales / Empresa Urrá S.A. E.S.P; 2006.
  21. Ospina J, Gay C, Conde A, Maga-a V, Sánchez-Torres G. Vulnerability of water resources in the face of potential climate change: generation of hydroelectric power in Colombia. Atmósfera 2009; 22(3): 229–252.
  22. United States Environmental protection Agency. Methods 2451 for determination of mercury in water. Cincinnati, OH: USEPA; 1994. (En línea, accesado 12 Agosto 2003). URL disponible en: http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007_07_10_methods_method_245_1.pdf.
  23. United States Environmental Protection Agency. Method 7471B for determination of mercury in solid or semisolid waste. Cincinnati, OH: USEPA; 1998. (En línea, accesado 12 Agosto 2003). URL disponible en: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/7471b.pdf.
  24. American Public Health Association - American Water Works Association - Water Environment Federation. Standard methods for the examination of water and wastewater. 21th Ed. New York: APHA-AWWA-WEF-APHA; 2005.
  25. FishBase World Wide Web: Search by species [en línea]. 2010. (fecha de acceso 14 de diciembre de 2010). URL disponible en: http://www.fishbase.org.
  26. Food and Agriculture Organization / World Health Organization, Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods CCCF, Seventh Session. Discussion paper on the review of the guideline levels for methylmercury in fish and predatory fish. CX/CF 13/7/16. Moscow: FAO/WHO; 2013. (En línea, accesado 9 Diciembre 20014). URL disponible en: ftp://ftp.fao.org/codex/meetings/cccf/cccf7/cf07_16e.pdf.
  27. Departamento Nacional de Planeación DNP. Documento 3565 del Conpes (Consejo Nacional de Política Económica y Social). Importancia estratégica del proyecto de generación termoeléctrico a carbón GECELCA 3. Bogotá DC.: DNP; 2009. (en línea, accesado 18 enero 2010). URL disponible en: https://pwh.dnp.gov.co/Portals/0/archivos/ documentos/Subdireccion/Conpes/3565.pdf.
  28. Marrugo-Negrete JL, Urango-Cardenas I, Burgos S, Díez S. Atmospheric deposition of heavy metals in the mining area of the San Jorge river basin, Colombia. Air Qual Atmos Health 2014; 7:577 -588. doi: 10.1007/s11869-014-0260-0. http://dx.doi.org/10.1007/s11869-014-0260-0
  29. Le Faucheur S, Tremblay Y, Fortin C, Campbell PGC. Acidification increases mercury uptake by a freshwater alga, Chlamydomonas reinhardtii. Environ Chem 2011; 8(6): 612-622.
  30. http://dx.doi.org/10.1071/EN11006
  31. Marrugo-Negrete J, Benitez L, Olivero J. Distribution of mercury in several environmental compartments in an aquatic ecosystem impacted by gold mining in Northern Colombia. Arch Environ Contam Toxicol 2008b; 55(2): 305–316. http://dx.doi.org/10.1007/s00244-007-9129-7
  32. Limbong D, Kumampung J, Ayhuan D, Arai T, Miyazaki N. Mercury pollution related to artisanal gold mining in north Sulawesi Island, Indonesia. Bull Environ Contam Toxicol 2005; 75(5): 989 – 996. http://dx.doi.org/10.1007/s00128-005-0847-0
  33. Marrugo-Negrete J, Benítez L, Olivero-Verbel J, Lans E, Vazquez F. Spatial and seasonal mercury distribution in the Ayapel Marsh, Mojana region, Colombia. Int J Environ Health Res 2010; 20(6):451-459. http://dx.doi.org/10.1080/09603123.2010.499451
  34. Olivero J, Solano B. Mercury in environmental samples from a waterbody contaminated by gold mining in Colombia, South America. Sci Total Environ 1998; 217(1-2): 83 – 89.
  35. http://dx.doi.org/10.1016/S0048-9697(98)00175-2

Sistema OJS 3.4.0.3 - Metabiblioteca |