Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Fribrinolytic activity and gas production by Pleurotus ostreatus-IE8 and Fomes fomentarius - EUM1 in bagasse cane

Fribrinolytic activity and gas production by Pleurotus ostreatus-IE8 and Fomes fomentarius - EUM1 in bagasse cane



Abrir | Descargar

Cómo citar
Sánchez-Santillán P., Meneses-Mayo, M., Miranda-Romero, L., Santellano-Estrada, E., & Alarcón-Zúñiga B. (2015). Fribrinolytic activity and gas production by Pleurotus ostreatus-IE8 and Fomes fomentarius - EUM1 in bagasse cane. Revista MVZ Córdoba, 20(supl), 4907-4916. https://doi.org/10.21897/rmvz.6

Dimensions
PlumX
Paulino Sánchez-Santillán
Marcos Meneses-Mayo
Luis Miranda-Romero
Eduardo Santellano-Estrada
Baldomero Alarcón-Zúñiga

ABSTRACT

Objective. To characterize the fibrolytic enzymatic activity of Pleurotus ostreatus-IE8 and Fomes fomentarius-EUM1 in sugarcane bagasse (BCA); to evaluation of the kinetics of in vitro production of BCA treated by solid fermentation (FS), crude enzyme extract (ECE) of P. ostreatus-IE8 and Fibrozyme®. Materials and methods. In fungi measured radial growth rate ( Vcr ) and biomass production in two culture media (with or without nitrogen source); activity of xylanases, cellulases and FS on BCA at 0, 7 and 15 d. The chemical analysis and kinetic analysis of in vitro gas production in 4 treatments (ECE adding enzymes obtained from the direct addition FS or FS ), witness (Fibrozyme®) and a control without addition and analyzed by a was completely randomized design. Results. Xylanases (7 d ) showed 6.32 and 5.50 UI g-1 initial substrate dry weight (SSi) for fungi P. ostreatus-IE8 and F. fomentarius-EUM1 , respectively ; P. ostreatus-IE8 scored higher activity of laccases (10.65 g -1 UI SSi) and F. fomentarius-EUM1 (1.90 UI g-1 SSi) cellulases. The ECE of P. ostreatus-IE8 and commercial enzyme did not differences (p>0.05). In the chemical composition or the gas production kinetics. The 4 treatments evaluated decreased values of the variables measured in the kinetics of gas production compared to the control (p≤0.05). Conclusions. The ECE of P. ostreatus-IE8 was similar to commercial enzyme degradation in vitro, so it is feasible to use pre-digest high fiber products.


Visitas del artículo 984 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Sánchez-Santillán P, Meneses MM, Torres-Salado N. Production of Lignocellulolytic Enzymes with Pleurotus ostreatus-IE8 by Solid Fermentation and Its Effect on the Chemical Composition of Sugarcane Bagasse. Life Sci J 2015; 12(2s):37-41.
  2. Okano K, Fukui S, Kitao R, Usagawa T. Effects of culture length of Pleurotus eryngii grown on sugarcane bagasse on in vitro digestibility and chemical composition. Anim Feed Sci Technol 2007; 136(3-4):240-247. http://dx.doi.org/10.1016/j.anifeedsci.2006.08.024
  3. Cuervo L, Folch JL, Quiroz RE. Lignocelulosa como Fuente de azúcares para la producción de etanol. BioTecnología 2009; 13(3):11-25.
  4. Kumar SS, Sczakas G, Soccol CR, and Pandey A. Production of Enzymes by Solid-State Fermentation in Current Developments in Solid-State Fermentation. 1a ed. New York: Springer; 2008.
  5. Loera CO, Pérez PMCI, Barbosa RJR, and Villase-or OF. Laccases. In: Guevara-González RG, Torres-Pacheco I, editors. Advances in Agricultural and Food Biotechnololy. Kerela, Indía: Cabi; 2006.
  6. Menke KH and Steingas H. Estimation of the energetic feed value obtained from Chemical analysis and in vitro gas production using rumen fluid. Anim Res Develop 1988; 28(1):7-55.
  7. Trinci APJ. A kinetic study of the growth of Aspergillus nidulans and other fungi. J Gen Microbiol 1969; 57(1):11-24. http://dx.doi.org/10.1099/00221287-57-1-11
  8. SAS. SAS/STAT Sofware. Version 9.3. Cary, NC SAS, USA: Institute Inc; 2011.
  9. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Biochem 1959; 31(3):426-428. http://dx.doi.org/10.1021/ac60147a030
  10. Klis M, Rogalski J, Bilewicz R. Voltammetric determination of catalytic reaction parameters of laccase bases on electrooxidation of hydroquinone and ABTS. Bioelectrochemistry 2007; 71(1):2-7. http://dx.doi.org/10.1016/j.bioelechem.2006.09.008
  11. Bradford MM. A rapid and sensitive for the quantitation of microgram quantities of protein-dye binding. Anal Biochem 1976; 72(1-2):248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3
  12. A.O.A.C. Official Methods of Analysis (18th Ed). Washington D.C.: A.O.A.C International; 2005.
  13. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991; 74(10):3583-3597. http://dx.doi.org/10.3168/jds.S0022-0302(91)78551-2
  14. Schofiel P, and Pell AN. Measurement and kinetic analysis of the neutral detergent-soluble carbohydrate fraction of legumes y grasses. J Anim Sci 1995; 73(11): 3455-3463. http://dx.doi.org/10.2527/1995.73113455x
  15. Blümmel M, Cone JW, Van Gelber AH, Nshalai I, Umunna NN, Makkar HPS, et al. Prediction of forage intake using in vitro gas production methods: Comparison of multiphase fermentation kinetics measured in an automated gas test, and combined gas volume and substrate degradability measurements in a manual syringe system. Anim Feed Sci Technol 2005; 123-124(1):517-526. http://dx.doi.org/10.1016/j.anifeedsci.2005.04.040
  16. Elisashvili V, Kachlishvili E and Penninck M. Effect of growth substrate, method of fermentation, and nitrogen source on lignocelluloses-degrading enzymes production by white-rot basidiomycetes. J Ind Microbiol Biotechnol 2008; 35(11):1531-1538. http://dx.doi.org/10.1007/s10295-008-0454-2
  17. Márquez AAT, Mendoza MGD, González MSS, Buntins DSE y Loera CO. Actividad fibrolítica de enzimas producidas por Trametes sp EUM1, Pleurotus ostreatus IE8 y Aspergillus niger AD96.4 en fermentación sólida. Interciencia 2007; 32(11):780-785.
  18. Membrillo I, Sánchez C, Meneses M, Favela E, Loera O. Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains. Bioresource Technol 2008; 99(16):7842-7847. http://dx.doi.org/10.1016/j.biortech.2008.01.083
  19. Levin L, Melignani E, Ramos AM. Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresource Technol 2010; 101(12):4554-4563. http://dx.doi.org/10.1016/j.biortech.2010.01.102
  20. Peláez-Acero A, Meneses-Mayo M, Miranda-Romero LA, Ayala-Martínez M, Crosby-Galván MM, Loera-Corral O, y Megías-Rivas MD. Enzimas fibrolíticas producidas por fermentación en estado sólido para mejorar los ensilajes de ca-a de azúcar. Agrociencia 2011; 45(6):675-685.
  21. Akinfemi A, Ogunwole OA, Ladipo MK, Adu OA, Osineye OM, and Apata ES. Enhacement of the nutritive value of maize leaf treated with white-rot fungi: Pleurotus sajur caju and Pleurotus pulmonarius, and the effects on chemical composition and in vitro digestibility. Prod Agric Technol 2008; 4(1):106-114.
  22. Bindelle J, Ilunga Y, Delacollette M, Muland-Kayij M, Umba M, Kindele E and Buldgen A. Voluntary intake, chemical composition and in vitro digestibility of fresh forages fed to Guinea pigs in periurban rearing systems of Kinshasa (Democratic Republic of Congo). Trop Anim Health Prod 2007; 39(6):419-426. http://dx.doi.org/10.1007/s11250-007-9036-y
  23. Andrés S, Calleja A, López S, González JS, Rodríguez PL, Giráldez FJ. Prediction of gas production kinetic parameters of forages by chemical composition and near infrared reflectance spectroscopy. Anim Feed Sci Technol 2005; 123-124(1):487-499. http://dx.doi.org/10.1016/j.anifeedsci.2005.04.043

Sistema OJS 3.4.0.3 - Metabiblioteca |