Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Enfermedades bacterianas y sus agentes etiológicos identificados en peces de México - Una Revisión

Bacterial diseases and their etiological agents identified in fish from Mexico - A Review Enfermedades bacterianas en peces de México



Cómo citar
Alcántara-Jauregui, F. M. ., Valladares-Carranza, B. ., & Ortega, C. (2022). Enfermedades bacterianas y sus agentes etiológicos identificados en peces de México - Una Revisión: Enfermedades bacterianas en peces de México. Revista MVZ Córdoba, 27(2), e2387. https://doi.org/10.21897/rmvz.2387

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Frida M. Alcántara-Jauregui
Benjamín Valladares-Carranza
Cesar Ortega

Este trabajo concentra la información bibliográfica existente acerca de las bacterias aisladas y/o identificadas a partir de peces de México. El análisis muestra que el estudio de la sanidad de peces del país es relativamente reciente, y describe el aislamiento de varios géneros bacterianos obtenidos tanto de peces clínicamente enfermos como subclínicos, con alta frecuencia de bacterias oportunistas; asimismo se muestra que en la última década se ha confirmado la presencia de bacterias emergentes causando enfermedad septicémica en peces cultivados. En ambiente de agua dulce Flavobacterium psychrophilum, Yersinia spp., Weissella ceti y Lactococcus garviae han causado enfermedad septicémica en trucha arcoíris (Oncorhynchus mykiss), mientras que Francisella orientalis, Streptococcus iniae y Mycobacterium spp. han afectado a tilapia (Oreochromis spp.). En ambiente salino únicamente Nocardia seriolae se reporta como causa de enfermedad sistémica en corvina roja (Sciaenops ocellatus). Pese a la disponibilidad de esta información, la situación sanitaria de la piscicultura del país no es reconocida; sin embargo, la ocurrencia de las enfermedades bacterianas emergentes aquí reportadas, muestran la necesidad de conocer su distribución en el país.


Visitas del artículo 1634 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Sudheesh PS, Al-Ghabshi A, Al-Mazrooei M, Al-Habsi S. Comparative Pathogenomics of Bacteria Causing Infectious Diseases in Fish. Int J Evol Biol. 2012; 2012:457264. https://doi.10.1155/2012/457264
  2. CONAPESCA. Anuario estadístico de acuicultura y pesca. 2018. Comisión Nacional de Acuicultura y Pesca: México; 2018. [On line]. https://www.conapesca.gob.mx/work/sites/cona/dgppe/2018/ANUARIO_2018.pdf
  3. del Rio-Rodríguez E, Ramírez-Paredes JG, Soto-Rodríguez S, Shapira Y, Huchin-Cortes M, Ruiz-Hernández J, et al. First evidence of nocardiosis in farmed red drum (Sciaenops ocellatus, Linnaeus) caused by Nocardia seriolae in the Gulf of Mexico. bioRxiv. 2021. https://doi.org/10.1101/2021.01.15.426713
  4. Diario Oficial de la Federación, México. ACUERDO mediante el cual se dan a conocer en los Estados Unidos Mexicanos las enfermedades y plagas exóticas y endémicas de notificación obligatoria de los animales terrestres y acuáticos. [On line]. [accesed 2 march 2020]. Disponible en https://dof.gob.mx/nota_detalle.php?codigo=5545304& fecha=29/11/2018
  5. Ortega C, Valladares B. Analysis on the development and current situation of rainbow trout (Oncorhynchus mykiss) farming in Mexico. Rev Aquac. 2015; 9(2):194-202. https://doi.org/10.1111/raq.12133
  6. Salgado-Miranda C, Palomares E, Jurado M, Marín A, Vega F, Soriano-Vargas E. Isolation and Distribution of Bacterial Flora in Farmed Rainbow Trout from Mexico. J Aquat Anim Health. 2010; 22(4):244–247. https://doi.org/10.1577/H09-004.1
  7. Soriano-Vargas E, Castro-Escarpulli G, Aguilera-Arreola MG, Vega-Castillo F, Salgado-Miranda C. Aislamiento e identificación de Aeromona bestiarum a partir de carpa común de cultivo (Cyprinus carpió L.) procedentes de Santa María Chapa de Mota, Estado de México, México. Vet Méx. 2010; 41(2):111-115. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0301-50922010000200004
  8. Ortega C, Mancera G, Enríquez R, Vargas A, Martínez S, Fajardo R, et al. First identification of Francisella noatunensis subsp. orientalis causing mortality in Mexican tilapia Oreochromis spp. DAO. 2016; 120(3):205–215. https://doi.org/10.3354/dao02999
  9. Ortega C, García I, Irgang R, R Fajardo, D Tapia-Cammas, J Acosta, Avendaño-Herrera R. First identification and characterization of Streptococcus iniae obtained from tilapia (Oreochromis aureus) farmed in Mexico. J Fish Dis. 2018; 41(5):773-782. https://doi.org/10.1111/jfd.12775
  10. Castrejón-Nájera J, Ortega C, Fajardo R, Irgang R, Tapia-Cammas D, Poblete-Morales M, et al. Isolation characterization, virulence potential of Weissella ceti responsible for weissellosis outbreak in rainbow trout (Oncorhynchus mykiss) cultured in Mexico. Transbound Emerg Dis. 2018; 65:1401–1407. https://doi.10.1111/tbed.12978
  11. Ortega C, Irgang R, Valladares-Carranza B, Collarte C, Avendaño-Herrera R. First Identification and Characterization of Lactococcus garvieae Isolated from Rainbow Trout (Oncorhynchus mykiss) Cultured in Mexico. Animals. 2020; 10(9):1609. https://doi.org/10.3390/ani10091609
  12. Parte AC, Sardà CJ, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70(11):5607-5612. https://doi.org/10.1099/ijsem.0.004332
  13. Gonçalves-Pessoa RB, de Oliveira WF, Marques DS, dos Santos Correia MT, de Carvalho EVM, Coelho LB. The genus Aeromonas: A general approach. Microb Pathog. 2019; 130:81–94. https://doi.org/10.1016/j.micpath.2019.02.036
  14. Zepeda-Velázquez AP, Vega-Sánchez V, Salgado-Miranda C, Soriano-Vargas E. Histopathological findings in farmed rainbow trout (Oncorhynchusmykiss) naturally infected with 3 different Aeromonas species. Can J Vet Res. 2015; 79:250–254. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445519/
  15. Fernández-Bravo A, Figueras MJ. An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity. Microorganisms. 2020; 8(1):129. https://doi.org/10.3390/microorganisms8010129
  16. Aguilar-García CR. Infección de piel y tejidos blandos por el género Aeromonas. Med Int Méx. 2015; 31(6):701-708. https://medicinainterna.org.mx/article/infeccion-de-piel-y-tejidos-blandos-por-el-genero-aeromonas/
  17. Negrete RP, Romero JJ, Arredondo-Figueroa JL. Resistencia a antibióticos y presencia de plásmidos en: Aeromonas hydrophila, Vibrio fluvialis y Vibrio furnissii, aislados de Carassius auratus auratus. Vet Méx. 2004; 35(1):1-10. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=116
  18. Soto-Rodríguez S, Cabanillas-Ramos J, Alcaraz U, Gomez-Gil1 B, Romalde J. Identification and virulence of Aeromonas dhakensis, Pseudomonas mosselii and Microbacterium paraoxydans isolated from Nile tilapia, Oreochromis niloticus, cultivated in Mexico. J Appl Microbiol. 2013; 115:654-662. https://doi.org/10.1111/jam.12280
  19. Castro-Escarpulli G, Figueras MJ, Aguilera-Arreola G, Soler L, Fernández-Rendón E, Aparicio GO, et al. Characterisation of Aeromonas spp. isolated from frozen fish intended for human consumption in Mexico. Int J Food Microbiol. 2003; 84(1):41-49. https://doi.10.1016/s0168-1605(02)00393-8
  20. Vega-Sánchez V, Acosta-Dibarrat J, Vega-Castillo F, Castro-Escarpulli G, Aguilera-Arreola MG, Soriano-Vargas E. Phenotypical characteristics, genetic identification, and antimicrobial sensitivity of Aeromonas species isolated from farmed rainbow trout (Onchorynchus mykiss) in Mexico. Acta Tropica. 2014; 130:76– 79. https://doi.org/10.1016/j.actatropica.2013.10.021
  21. Darak O, Barde RD. Pseudomonas fluorescens associated with Bacterial Disease in Catla catla in Marathwada Region of Maharashtra. IJABR. 2015; 6(2):189-195. http://www.bipublication.com/ijabr_V6I2.html
  22. Pękala-Safińska A. Contemporary Threats of Bacterial Infections in Freshwater Fish. J Vet Res. 2018; 62(3):261–267. https://doi.org/10.2478/jvetres-2018-0037
  23. Algammal AM, Mabrok M, Sivaramasamy E, Youssef FM, Atwa M, El-kholy A, et al. Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and blaTEM, blaCTX-M, and tetA antibiotic-resistance genes. Sci Rep. 2020; 10(1):1-12. https://doi.org/10.1038/s41598-020-72264-4
  24. Negrete RP, Romero JJ, Villegas LG, Vázquez SV. Presencia de plásmidos en Pseudomonas aisladas de peces de ornato. Vet Mex. 2003; 34(3):289-295. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=5679
  25. Loch TP, Faisal M. Emerging flavobacterial infections in fish: A review. J Adv Res. 2015; 6(3):283-300. https://doi.org/10.1016/j.jare.2014.10.009
  26. Wahli T, Madsen L. Flavobacteria, a never ending threat for fish: a review. Curr Clin Microbiol Rep. 2018; 5(1):26-37. https://doi.org/10.1007/s40588-018-0086-x
  27. Castillo-Miranda A, Ortega C, Martínez-Castañeda S, Fajardo-Muñoz R, Valladares-Carranza B, Avendaño-Herrera R, et al. First isolation and characterisation of Flavobacterium psychrophilum from Diseased rainbow trout (Oncorhynchus mykiss) Farmed in Mexico. Bull Eur Assoc Fish Pathol. 2017; 37:23-30. https://eafp.org/download/2017-volume37/issue_1/37-1-023-ortega-avendanoherrera.pdf
  28. Pajdak-Czaus J, Platt-Samoraj A, Szweda W, Krzysztof AS, Terech-Majewska E. Yersinia ruckeri—A threat not only to rainbow trout. Aquac Res. 2019; 50(11):3083-3096. https://doi.org/10.1111/are.14274
  29. Ummey S, Khan S, NVijayakumar PP, Ramya A. Enteric Red Mouth disease and its causative bacterium, Yersinia ruckeri, in Indian Major Carps from culture ponds in Andhra Pradesh, India. Aquacult Fish. 2020; 6(3):289-299. https://doi.org/10.1016/j.aaf.2020.05.009
  30. Avendano-Herrera R, Tapia-Cammas D, Aedo A, Saldivia P, Ortega C, Irgang R. Disease caused by Yersinia ruckeri serotype O2b found in Chilean-farmed coho salmon, Oncorhynchus kisutch (Walbaum, 1792). J Fish Dis. 2017; 40(2):279-285. https://doi.org/10.1111/jfd.12502
  31. Fusco V, Quero MQ, Cho GS, Kabisch J, Meske D, Neve H, et al. The genus Weissella: taxonomy, ecology and biotechnological potential. Front Microbiol. 2015; 6:1–22. https://doi.org/10.3389/fmicb.2015.00155
  32. Welch TJ, Good CM. Mortality associated with Weissellosis (Weissella sp.) in USA farmed rainbow trout: Potential for control by vaccination. Aquaculture. 2013; 388:122–127. https://doi.org/10.1016/j.aquaculture.2013.01.021
  33. Figueiredo HC, Costa FA, Leal CA, Carvalho-Castro GA, Leite RC. Weissella sp. outbreaks in commercial rainbow trout (Oncorhynchus mykiss) farms in Brazil. Vet Microbiol. 2012; 156:359–366. https://doi.org/10.1016/j.vetmic.2011.11.008
  34. Vásquez-Machado G, Rubiano-Garzón M, Yepes-Blandón J, Gordillo-González D, Avila-Coy J. Weissellosis in rainbow trout in Colombia. Braz J Vet Pathol. 2020; 2(3):575-580. https://doi.10.24070/bjvp.1983-0246.v13i3p575-580
  35. Medina M, Fernandez-Espinel C, Sotil G, Yunis-Aguinaga J, Flores-Dominick V. First description of Weissella ceti associated with mortalities in farmed rainbow trout in Peru. Aquaculture. 2020; 529:735608. https://doi.org/10.1016/j.aquaculture.2020.735608
  36. Fawzy NM, Osman K, Ibrahim ME, Naguib M, Ali M, Abd-Elrahman S. Streptococcosis in tilapia: Clinico-pathological picture of experimentally infected tilapia. Life Sci J. 2014; 11:1005–1012. http://www.lifesciencesite.com/lsj/life1109/
  37. Bwalya P, Simukoko C, Hang’ombe BM, Støre SC, Støre P, Gamil AA, et al. Characterization of streptococcus-like bacteria from diseased Oreochromis niloticus farmed on Lake Kariba in Zambia. Aquaculture. 2020; 523:735185. https://doi.org/10.1016/j.aquaculture.2020.735185
  38. Karsidani HS, Soltani M, Nikbakhat-Brojeni G, Ghasemi M, Skall HF. Molecular epidemiology of zoonotic streptococcosis/lactococcosis in rainbow trout (Oncorhynchus mykiss) aquaculture in Iran. Iran J Microbiol. 2010; 2(4):198-209. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279792/
  39. Hossain MM, Ehsan A, Rahman M.A, Haq M, Chowdhury BR. Transmission and pathology of Streptococcus inane in monosex Nile tilapia (Oreochromis niloticus) in aquaculture of Bangladesh. J Fisheries. 2014; 2:90-99. https://doi.org/10.17017/jfish.v2i1.2014.28
  40. Porvaznik I, Solovič I, Mokrý J. Non-Tuberculous Mycobacteria: Classification, Diagnostics, and Therapy. Adv Exp Med Biol. 2017; 944:19-25. https://doi.org/10.1007/5584_2016_45
  41. Puk K, Guz L. Occurrence of Mycobacterium spp. in ornamental fish. Ann Agric Environ Med. 2020; 27(4):535-539. https://doi.org/10.26444/aaem/114913
  42. Johansen MD, Herrmann JL, Kremer L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol. 2020; 18(7):392-407. https://doi.org/10.1038/s41579-020-0331-1
  43. Gauthier DT. Bacterial zoonoses of fishes: A review and appraisal of evidence for linkages between fish and human infections. Vet J. 2015; 203:27-35. https://doi.org/10.1016/j.tvjl.2014.10.028
  44. Lara-Flores M, Aguirre-Guzmán G, Balan-Zetina SB, Sonda-Santos KY, Zapata AA. Identification of a Mycobacterium agent isolated from tissues of Nile tilapia (Oreochromis niloticus). Turk J Fish Aquat Sci. 2014; 14:575–580. https://doi.org/10.4194/1303-2712-v14_2_29
  45. Colquhoun DJ, Duodu S. Francisella infections in farmed and wild aquatic organisms. Vet Res. 2011; 42(1):42-47. https://doi.org/10.1186/1297-9716-42-47
  46. Ramirez-Paredes JG, Larsson P, Thompson KD, Penman DJ, Busse HJ, Ohrman C, et al. Reclassification of Francisella noatunensis subsp. orientalis Ottem et al. 2009 as Francisella orientalis sp. nov., Francisella noatunensis subsp. chilensis subsp. nov. and emended description of Francisella noatunensis. Int J Syst Evol Microbiol. 2020; 70:2034-2048. https://doi.org/10.1099/ijsem.0.004009
  47. Soto E, Baumgartner W, Wiles J, Hawke JP. Francisella asiatica as the causative agent of piscine francisellosis in cultured tilapia (Oreochromis sp.) in the United States. J Vet Diagn Inv. 2011; 23:821–825. https://doi.org/10.1177/1040638711407058
  48. Soto E, Hawke JP, Fernandez D, Morales JA. Francisella sp., an emerging pathogen of tilapia, Oreochromis niloticus (L.), in Costa Rica. J Fish Dis. 2009; 32:713. https://doi.org/10.1111/j.1365-2761.2009.01070.x
  49. López-Crespo R, Martínez-Chavarría L, Lugo-García AT, Romero-Romero L, García-Márquez LJ, Reyes-Matute A. Outbreak of francisellosis (Francisella noatunensis subsp. orientalis) in cultured neon jewel cichlids Hemichromis bimaculatus from Morelos, Mexico. DAO. 2019; 137:125-130. https://doi.org/10.3354/dao03429
  50. Maekawa S, Yoshida T, Wang PC. Current knowledge of nocardiosis in teleost fish. J Fish Dis. 2018; 41(3):413-419. https://doi.org/10.1111/jfd.12782
  51. Nayak SK, Nakanishi T. Development of Vaccines Against Nocardiosis in Fishes. Methods Mol Biol. 2016; 1404:193-201. https://doi.org/10.1007/978-1-4939-3389-1_13
  52. Oidtmann B, Peeler E, Lyngstad T, Brun E, Bang Jensen B, Stärk KD. Risk-based methods for fish and terrestrial animal disease surveillance. Prev Vet Med. 2013; 112(1-2):13-26. https://doi.org/10.1016/j.prevetmed.2013.07.008
  53. Wallace IS, McKay P, Murray AG. A historical review of the key bacterial and viral pathogens of Scottish wild fish. J Fish Dis. 2017; 40(12):1741-1756. https://doi.org/10.1111/jfd.12654
  54. Janda JM, Abbott SL, McIver CJ. Plesiomonas shigelloides revisited. Clin Microbiol Rev. 2016. 29:349–374. https://doi.org/10.1128/CMR.00103-15
  55. Oliveira RV, Oliveira MC, Pelli A. Disease Infection by Enterobacteriaceae Family in Fishes: A Review. J Microbiol Exp. 2017; 4(5):00128. https://doi.org/10.15406/jmen.2017.04.00128

Sistema OJS 3.4.0.3 - Metabiblioteca |