Perfil bioquímico hepático en cuyes alimentados con la inclusión de harina de pisonay (Erythrina edulis)

##plugins.themes.bootstrap3.article.main##

Ruth Ramos Zuñiga
Ludwing A Cárdenas-Villanueva
Resumen

Objetivo. Evaluar el efecto del porcentaje de inclusión y edad de rebrote de harina de hojas de Erythrina edulis en la respuesta de los metabolitos hepáticos de cuyes en el valle interandino de Abancay. Materiales y métodos. Se utilizó 10 cuyes machos mejorados asignados a cada dieta experimental que contenía 10, 20 y 30% de inclusión por 4, 8 y 12 meses de edad de rebrote y una dieta control con 20% de harina de alfalfa. A los 56 días se recolectaron muestras de sangre con finalidad de determinar los metabolitos hepáticos: proteína total, albumina, bilirrubina total, aminotransferasas, fosfatasa alcalina y gamma-glutamil transpeptidasa. Resultados. Los niveles séricos de la albumina, bilirrubina total, aminotransferasas y gamma-glutamil transpeptidasa fueron diferentes al grupo control (p<0.05). La proteína total y albumina (6.0 y 3.0 mg/dl) fueron mayores a los 12 meses en relación a ocho (5.8 y 2.8 mg/dl) y cuatro (5.6 y 2.8 mg/dl) meses de edad de rebrote; la bilirrubina total disminuyó hasta 0.1 mg/dl al incrementarse la edad de rebrote (p<0.05). La alanina y aspartato aminotransferasa disminuyeron por efecto de la edad de rebrote (54.0 a 34.5 UI/L; 80.7 a 56.9 UI/L, respectivamente) y el porcentaje de inclusión (46.7 a 35.8 UI/L; 75.5 a 57.7 UI/L, respectivamente) (p<0.05). La bilirrubina total disminuyó de 0.2 a 0.1 mg/dl al incrementarse el porcentaje de inclusión. Conclusiones. Los metabolitos hepáticos de cuyes mostraron variabilidad en la bilirrubina total y aminotransferasas por efecto de la inclusión y edad de rebrote de la harina de pisonay.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

##plugins.themes.bootstrap3.article.details##

Referencias / Ver

Meza CJ, Cabrera RP, Morán JJ, Cabrera CA, Mieles EM, Meza GA. Profitability and production of guinea pigs fed with forage shrubs tropical in rural area of Quevedo, Ecuador. Cienc Tecn UTEQ. 2018; 11(2):1–7. https://doi.org/10.18779/cyt.v11i2.231

Choque H, Huaita A, Cárdenas LA, Ramos R. Effect of regrowth age the ruminal degradation of pisonay (Erythrina sp) in Andean valley of Abancay. J High Andean Res. 2018; 20(2):189–202. http://dx.doi.org/10.18271/ria.2018.363

Cárdenas-Villanueva LA, Sarmiento-Casavilca VH, Ramos-Zuniga R. Productive and technological characteristics into guinea pig meat (Cavia porcellus) using pisonay based-diets (Erythrina sp). J High Andean Res. 2018; 20(4):451–460. https://doi.org/10.18271/ria.2018.422

Guevara J, Díaz P, Bravo N, Vera M, Crisóstomo O, Barbachán H, et al. Use flour pajuro (Erythrina edulis) as food supplement in guinea pig – Lima. Rev Per Quím Ing Quím. 2013; 16(2):21–28. https://revistasinvestigacion.unmsm.edu.pe/index.php/quim/article/download/6590/5859/.

Meza GA, Loor NJ, Sánchez AR, Avellaneda JH, Meza CJ, Vera DF, et al. Leaf meals and tropical shrubby foliage (Morus alba, Erythrina poeppigiana, Tithonia diversifolia and Hibiscus rosa-sinensis) in feeding guinea pigs (Cavia porcellus Linnaeus). Rev Med Vet Zoot. 2014; 61(3):258–269. http://dx.doi.org/10.15446/rfmvz.v61n3.46874

Ramirez-Borda Y, Cárdenas-Villanueva LA, Ramos De la Riva VA, Gómez-Quispe OE. Serum concentration of aminotranferases in guinea pigs (Cavia porcellus) fed diets based on pisonay (Erythrina sp). Rev Investig Vet Perú. 2019; 30(3):1099–1108. http://dx.doi.org/10.15381/rivep.v30i3.16604

Nnama T, Asomugha A, Asomugha R, Umeasalugo K, Mgbemena I. Phytochemical analysis and acute toxicological study of Erythrina senegalensis ethanolic leaf extract in Albino Wistar rats. Anat Physiol. 2016; 6(6):6–8. http://dx.doi.org/10.4172/2161-0940.1000248

Herlina T, Madihah M, Deni D, Amien S. Subchronic toxicity of methanol extract from Erythrina variegata (Leguminosae) leaves on male Wistar rats (Rattus norvegicus). Molekul. 2017; 12(1):88–98. http://dx.doi.org/10.20884/1.jm.2017.12.1.349

Birck MM, Tveden-Nyborg P, Lindblad MM, Lykkesfeldt J. Non-terminal blood sampling techniques in guinea pigs. J Vis Exp. 2014; 92:e51982. http://dx.doi.org/10.3791/51982

Lawrence YA, Steiner JM. Laboratory evaluation of the liver. Vet Clin North Am Small Anim Pract. 2017; 47(3):539–553. http://dx.doi.org/10.1016/j.cvsm.2016.11.005

Conceição A, Monteiro DM, Nunes R de S, Fakhouri R, Alves Rodrigues S, Teixeira-Silva F. Toxicidade aguda do extrato aquoso de folhas de Erythrina velutina em animais experimentais. Rev Bras Farmacogn. 2008; 18(Supl.):739–743. http://dx.doi.org/10.1590/s0102-695x2008000500018

Cárdenas-Villanueva LA, Ramos-Zuñiga R, Huamán-Gamarra JL, Ramirez E. Efecto de la inclusión de harina de pisonay (Erythrina edulis) de tres edades de rebrote sobre las características productivas en cuyes (Cavia porcellus). Rev Investig Vet Perú. 2021; 32(6):e21702. https://doi.org/10.15381/rivep.v32i6.21702

Mínguez C, Calvo A, Zeas VA, Sánchez D. A comparison of the growth performance, carcass traits, and behavior of guinea pigs reared in wire cages and floor pens for meat production. Meat Sci. 2019; 152(6):38–40. https://doi.org/10.1016/j.meatsci.2019.02.012

Jurado-Gámez H, Cabrera-Lara EJ, Salazar JA. Comparison of two types of sacrifice and different ripening times on physico-chemical and microbiological variables of guinea pig (Cavia porcellus) meat. Rev Med Vet Zoot. 2016; 63(3):201–217. http://dx.doi.org/10.15446/rfmvz.v63n3.62741

Genzer SC, Huynh T, Coleman-McCray JAD, Harmon JR, Welch SR, Spengler JR. Hematology and clinical chemistry reference intervals for inbred strain 13/N Guinea pigs (Cavia porcellus). J Am Assoc Lab Anim Sci. 2019; 58(3):293–303. http://dx.doi.org/10.30802/AALAS-JAALAS-18-000118

Washington IM, Van Hoosier G. Clinical biochemistry and hematology. In: Suckow MA, Stevens KA, Wilson RP, editors. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. Academic Press: Washington; 2012. http://dx.doi.org/10.1016/B978-0-12-380920-9.00003-1

Paredes-López D, Robles-Huaynate R, Córdova-Chumbes O, De la Cruz-Paucar E. Effect of the Erythrina sp. leaves powder on biochemical profile, biological parameters and liver histopathology of Cavia porcellus. Sci Agropecu. 2017; 8(4):297–304. http://dx.doi.org/10.17268/sci.agropecu.2017.04.01

Kumar R, Sharma R, Patil RD, Mal G, Kumar A, Patial V, et al. Sub-chronic toxicopathological study of lantadenes of Lantana camara weed in Guinea pigs. BMC Vet Res. 2018; 14(1):1–13. http://dx.doi.org/10.1186/s12917-018-1444-x

Singh A, Bhat TK, Sharma OP. Clinical Biochemistry of Hepatotoxicity. J Clin Toxicol. 2011; 4(1):1–19. http://dx.doi.org/10.4172/2161-0495.s4-001

Lu W, Wang J, Zhang HJ, Wu SG, Qi GH. Evaluation of Moringa oleifera leaf in laying hens: effects on laying performance, egg quality, plasma biochemistry and organ histopathological indices. Itali J Anim Sci. 2016; 15(4):658-665. https://doi.org/10.1080/1828051X.2016.1249967

Hersey-Benner C. Protein, Total. In: Mayer J, Donnelly TM, editors. Clinical Veterinary Advisor: Birds and Exotic Pets. Academic Press: Washington; 2012. http://dx.doi.org/10.1016/B978-1-4160-3969-3.00372-3

Titus D, Ahmed MU, Umaru IJ. Evaluation of Aqueous Stem Bark Extract of Guiera senegalensis on Wistar Rats. IJTCMR. 2022; 3(1):45-51 http://dx.doi.org/10.53811/ijtcmr.1060996

Onu PN, Aniebo AO. Influence of Moringa oleifera leaf meal on the performance and blood chemistry of starter broilers. Int J Food Agric Vet Sci. 2011; 1(1):38–44. https://www.cibtech.org/J-FOOD-AGRI-VETERINARY-SCIENCES/PUBLICATIONS/2011/Vol%201%20No.%201/02-8-JFAV-Aneibo.pdf

Ndou SP, Khanyile M, Chimonyo M. Growth performance and nutrition-related serum metabolites in growing pigs fed on Acacia Tortilis leaf meal. Livest Sci. 2015; 182:22–27. http://dx.doi.org/10.1016/j.livsci.2015.10.003

McGill MR, Williams CD, Jaeschke H. Liver Toxicology. In: Abou-Donia MB, editor. Mammalian Toxicology. John Wiley & Sons; 2015. http://dx.doi.org/10.1002/9781118683484.ch20

Ogunlana OO, Ogunlana OE, Adeneye AA, Udo-Chijioke OAC, Dare-Olipede TI, Olagunju JA, et al. Evaluation of the toxicological profile of the leaves and young twigs of Caesalpinia bonduc (Linn) roxb. Afr J Tradit Complement Altern Med. 2013; 10(6):504–512. http://dx.doi.org/10.4314/ajtcam.v10i6.20

Jolhe DK, Mukhopadhayay SK, Som TL. Effect of Ampelopteris prolifera fern on clinical and haemato-biochemical parameters in guinea pigs. Indian J Vet Pathol. 2006; 30(1):36–38. http://www.indianjournals.com/ijor.Aspx?target=ijor:ijvp&volume=30&issue=1&article=009&type=fulltext

Zhai S, Li M, Li M, Zhang X, Ye H, Lin Z, et al. Effect of dietary Moringa stem meal level on growth performance, slaughter performance and serum biochemical parameters in geese. J Anim Physiol Anim Nutr. 2020; 104(1):126–135. http://dx.doi.org/10.1111/jpn.13209

Zaher HA, Alawaash SA, Tolba AM, Swelum AA, Abd El-Hack ME, Taha AE, et al. Impacts of Moringa oleifera foliage substituted for concentrate feed on growth, nutrient digestibility, hematological attributes, and blood minerals of growing goats under Abu Dhabi conditions. Sustain. 2020; 12(15):6096. http://dx.doi.org/10.3390/su12156096

Ospina-Daza LA, Buitrago-Guillen ME, Vargas-Sánchez JE. Identification and degradation of mimosine, a toxic compound in Leucaena leucocephala (Lam.) de Wit. Pastos y Forrajes. 2017; 40(4):257–264. https://payfo.ihatuey.cu/index.php?journal=pasto&page=article&op=view&path%5B%5D=1994

Nepomuceno D, Carvalho JC, Carvalho MG, Duarte R, Catunda F. Classes of secondary metabolites identified in three legume species. R Bras Zootec. 2013; 42(10):700–705. http://dx.doi.org/10.1590/S1516-35982013001000002

Luckert C, Braeuning A, Lampen A, Hessel-Pras S. PXR: Structure-specific activation by hepatotoxic pyrrolizidine alkaloids. Chem Biol Interact. 2018; 288(2):38–48. http://dx.doi.org/10.1016/j.cbi.2018.04.017

Verdecia DM, Herrera RS, Ramírez JL, Paumier M, Bodas R, Andrés S, et al. Erythrina variegata quality in the Cauto Valley, Cuba. Agroforest Syst. 2020; 94(4): 1209–1218. http://dx.doi.org/10.1007/s10457-019-00353-z

Spittler AP, Afzali MF, Bork SB, Burton LH, Radakovich LB, Seebart CA, Moore AR, Santangelo KS. Age- and sex-associated differences in hematology and biochemistry parameters of Dunkin Hartley guinea pigs (Cavia porcellus). PLoS ONE. 2021; 16(7):e0253794. https://doi.org/10.1371/journal.pone.0253794

Parimoo HA, Sharma R, Patil RD, Sharma OP, Kumar P, Kumar N. Efecto hepatoprotector del extracto de hoja de Ginkgo biloba sobre la hepatotoxicidad inducida por lantadenes en cobayos. Toxicon. 2014; 81(5):1–12. https://doi.org/10.1016/j.toxicon.2014.01.013

Salihu SB. Comparative effect of three different energy sources on hematology and serum biochemistry of rabbits. J Anim Heal. 2020; 2(1):17–38. https://www.iprjb.org/journals/index.php/JAH/article/download/1164/1282/3628

Garba Y, Adeola EA. Haematological and serum biochemical profile of growing Yankasa ram lambs fed diets containing graded levels of sesame residue. EJFOOD. 2020; 2(5):1–4. http://dx.doi.org/10.24018/ejfood.2020.2.5.133

Lanca AJ, Israel Y. Histochemical demonstration of sinusoidal γ-glutamyltransferase activity by substrate protection fixation: Comparative studies in rat and guinea pig liver. Hepatology. 1991; 14(5):857–863. http://dx.doi.org/10.1002/hep.1840140518

Citado por