Skip to main navigation menu Skip to main content Skip to site footer

Hepatic biochemical profile in guinea pigs fed with inclusion of pisonay (Erythrina edulis) meal

Perfil bioquímico hepático en cuyes alimentados con la inclusión de harina de pisonay (Erythrina edulis)



How to Cite
Ramos Zuniga, R., & Cárdenas-Villanueva, L. A. (2023). Hepatic biochemical profile in guinea pigs fed with inclusion of pisonay (Erythrina edulis) meal. Journal MVZ Cordoba, 28(1), e2840. https://doi.org/10.21897/rmvz.2840

Dimensions
PlumX
Ruth Ramos Zuniga
Ludwing A Cárdenas-Villanueva

Objective. Evaluate the effect of the percentage of inclusion and regrowth age of Erythrina edulis leaf meal on the response of hepatic metabolites of guinea pigs in the inter-Andean valley of Abancay. Materials and methods. 10 improved male guinea pigs assigned to each experimental diet containing 10, 20 and 30% inclusion by 4, 8 and 12 months of regrowth age and a control diet with 20% alfalfa meal were used. At 56 days, blood samples were collected in order to determine hepatic metabolites: total protein, albumin, total bilirubin, aminotransferases, alkaline phosphatase, and gamma-glutamyl transpeptidase. Results. Serum levels of albumin, total bilirubin, aminotransferases and gamma-glutamyl transpeptidase were different from the control diet (p<0.05). Total protein and albumin (6.0 and 3.0 mg/dl) were higher at 12 months compared to eight (5.8 and 2.8 mg/dl) and four (5.6 and 2.8 mg/dl) months of regrowth age; total bilirubin (0.2 mg/dl) decreased to 0.1 mg/dl with increasing age at regrowth (p<0.05). Alanine and aspartate aminotransferase decreased due to the effect of regrowth age (54.0 to 34.5 IU/L; 80.7 to 56.9 IU/L, respectively) and inclusion percentage (46.7 to 35.8 IU/L; 75.5 to 57.7 IU/L, respectively) (p<0.05). Total bilirubin decreased from 0.2 to 0.1 mg/dl as the percentage of inclusion increased (p<0.05). Conclusions. Liver metabolites of guinea pigs showed variability in total bilirubin and aminotransferases due to the inclusion and regrowth age of pisonay meal.


Article visits 393 | PDF visits


Downloads

Download data is not yet available.
  1. Meza CJ, Cabrera RP, Morán JJ, Cabrera CA, Mieles EM, Meza GA. Profitability and production of guinea pigs fed with forage shrubs tropical in rural area of Quevedo, Ecuador. Cienc Tecn UTEQ. 2018; 11(2):1–7. https://doi.org/10.18779/cyt.v11i2.231
  2. Choque H, Huaita A, Cárdenas LA, Ramos R. Effect of regrowth age the ruminal degradation of pisonay (Erythrina sp) in Andean valley of Abancay. J High Andean Res. 2018; 20(2):189–202. http://dx.doi.org/10.18271/ria.2018.363
  3. Cárdenas-Villanueva LA, Sarmiento-Casavilca VH, Ramos-Zuniga R. Productive and technological characteristics into guinea pig meat (Cavia porcellus) using pisonay based-diets (Erythrina sp). J High Andean Res. 2018; 20(4):451–460. https://doi.org/10.18271/ria.2018.422
  4. Guevara J, Díaz P, Bravo N, Vera M, Crisóstomo O, Barbachán H, et al. Use flour pajuro (Erythrina edulis) as food supplement in guinea pig – Lima. Rev Per Quím Ing Quím. 2013; 16(2):21–28. https://revistasinvestigacion.unmsm.edu.pe/index.php/quim/article/download/6590/5859/.
  5. Meza GA, Loor NJ, Sánchez AR, Avellaneda JH, Meza CJ, Vera DF, et al. Leaf meals and tropical shrubby foliage (Morus alba, Erythrina poeppigiana, Tithonia diversifolia and Hibiscus rosa-sinensis) in feeding guinea pigs (Cavia porcellus Linnaeus). Rev Med Vet Zoot. 2014; 61(3):258–269. http://dx.doi.org/10.15446/rfmvz.v61n3.46874
  6. Ramirez-Borda Y, Cárdenas-Villanueva LA, Ramos De la Riva VA, Gómez-Quispe OE. Serum concentration of aminotranferases in guinea pigs (Cavia porcellus) fed diets based on pisonay (Erythrina sp). Rev Investig Vet Perú. 2019; 30(3):1099–1108. http://dx.doi.org/10.15381/rivep.v30i3.16604
  7. Nnama T, Asomugha A, Asomugha R, Umeasalugo K, Mgbemena I. Phytochemical analysis and acute toxicological study of Erythrina senegalensis ethanolic leaf extract in Albino Wistar rats. Anat Physiol. 2016; 6(6):6–8. http://dx.doi.org/10.4172/2161-0940.1000248
  8. Herlina T, Madihah M, Deni D, Amien S. Subchronic toxicity of methanol extract from Erythrina variegata (Leguminosae) leaves on male Wistar rats (Rattus norvegicus). Molekul. 2017; 12(1):88–98. http://dx.doi.org/10.20884/1.jm.2017.12.1.349
  9. Birck MM, Tveden-Nyborg P, Lindblad MM, Lykkesfeldt J. Non-terminal blood sampling techniques in guinea pigs. J Vis Exp. 2014; 92:e51982. http://dx.doi.org/10.3791/51982
  10. Lawrence YA, Steiner JM. Laboratory evaluation of the liver. Vet Clin North Am Small Anim Pract. 2017; 47(3):539–553. http://dx.doi.org/10.1016/j.cvsm.2016.11.005
  11. Conceição A, Monteiro DM, Nunes R de S, Fakhouri R, Alves Rodrigues S, Teixeira-Silva F. Toxicidade aguda do extrato aquoso de folhas de Erythrina velutina em animais experimentais. Rev Bras Farmacogn. 2008; 18(Supl.):739–743. http://dx.doi.org/10.1590/s0102-695x2008000500018
  12. Cárdenas-Villanueva LA, Ramos-Zuñiga R, Huamán-Gamarra JL, Ramirez E. Efecto de la inclusión de harina de pisonay (Erythrina edulis) de tres edades de rebrote sobre las características productivas en cuyes (Cavia porcellus). Rev Investig Vet Perú. 2021; 32(6):e21702. https://doi.org/10.15381/rivep.v32i6.21702
  13. Mínguez C, Calvo A, Zeas VA, Sánchez D. A comparison of the growth performance, carcass traits, and behavior of guinea pigs reared in wire cages and floor pens for meat production. Meat Sci. 2019; 152(6):38–40. https://doi.org/10.1016/j.meatsci.2019.02.012
  14. Jurado-Gámez H, Cabrera-Lara EJ, Salazar JA. Comparison of two types of sacrifice and different ripening times on physico-chemical and microbiological variables of guinea pig (Cavia porcellus) meat. Rev Med Vet Zoot. 2016; 63(3):201–217. http://dx.doi.org/10.15446/rfmvz.v63n3.62741
  15. Genzer SC, Huynh T, Coleman-McCray JAD, Harmon JR, Welch SR, Spengler JR. Hematology and clinical chemistry reference intervals for inbred strain 13/N Guinea pigs (Cavia porcellus). J Am Assoc Lab Anim Sci. 2019; 58(3):293–303. http://dx.doi.org/10.30802/AALAS-JAALAS-18-000118
  16. Washington IM, Van Hoosier G. Clinical biochemistry and hematology. In: Suckow MA, Stevens KA, Wilson RP, editors. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. Academic Press: Washington; 2012. http://dx.doi.org/10.1016/B978-0-12-380920-9.00003-1
  17. Paredes-López D, Robles-Huaynate R, Córdova-Chumbes O, De la Cruz-Paucar E. Effect of the Erythrina sp. leaves powder on biochemical profile, biological parameters and liver histopathology of Cavia porcellus. Sci Agropecu. 2017; 8(4):297–304. http://dx.doi.org/10.17268/sci.agropecu.2017.04.01
  18. Kumar R, Sharma R, Patil RD, Mal G, Kumar A, Patial V, et al. Sub-chronic toxicopathological study of lantadenes of Lantana camara weed in Guinea pigs. BMC Vet Res. 2018; 14(1):1–13. http://dx.doi.org/10.1186/s12917-018-1444-x
  19. Singh A, Bhat TK, Sharma OP. Clinical Biochemistry of Hepatotoxicity. J Clin Toxicol. 2011; 4(1):1–19. http://dx.doi.org/10.4172/2161-0495.s4-001
  20. Lu W, Wang J, Zhang HJ, Wu SG, Qi GH. Evaluation of Moringa oleifera leaf in laying hens: effects on laying performance, egg quality, plasma biochemistry and organ histopathological indices. Itali J Anim Sci. 2016; 15(4):658-665. https://doi.org/10.1080/1828051X.2016.1249967
  21. Hersey-Benner C. Protein, Total. In: Mayer J, Donnelly TM, editors. Clinical Veterinary Advisor: Birds and Exotic Pets. Academic Press: Washington; 2012. http://dx.doi.org/10.1016/B978-1-4160-3969-3.00372-3
  22. Titus D, Ahmed MU, Umaru IJ. Evaluation of Aqueous Stem Bark Extract of Guiera senegalensis on Wistar Rats. IJTCMR. 2022; 3(1):45-51 http://dx.doi.org/10.53811/ijtcmr.1060996
  23. Onu PN, Aniebo AO. Influence of Moringa oleifera leaf meal on the performance and blood chemistry of starter broilers. Int J Food Agric Vet Sci. 2011; 1(1):38–44. https://www.cibtech.org/J-FOOD-AGRI-VETERINARY-SCIENCES/PUBLICATIONS/2011/Vol%201%20No.%201/02-8-JFAV-Aneibo.pdf
  24. Ndou SP, Khanyile M, Chimonyo M. Growth performance and nutrition-related serum metabolites in growing pigs fed on Acacia Tortilis leaf meal. Livest Sci. 2015; 182:22–27. http://dx.doi.org/10.1016/j.livsci.2015.10.003
  25. McGill MR, Williams CD, Jaeschke H. Liver Toxicology. In: Abou-Donia MB, editor. Mammalian Toxicology. John Wiley & Sons; 2015. http://dx.doi.org/10.1002/9781118683484.ch20
  26. Ogunlana OO, Ogunlana OE, Adeneye AA, Udo-Chijioke OAC, Dare-Olipede TI, Olagunju JA, et al. Evaluation of the toxicological profile of the leaves and young twigs of Caesalpinia bonduc (Linn) roxb. Afr J Tradit Complement Altern Med. 2013; 10(6):504–512. http://dx.doi.org/10.4314/ajtcam.v10i6.20
  27. Jolhe DK, Mukhopadhayay SK, Som TL. Effect of Ampelopteris prolifera fern on clinical and haemato-biochemical parameters in guinea pigs. Indian J Vet Pathol. 2006; 30(1):36–38. http://www.indianjournals.com/ijor.Aspx?target=ijor:ijvp&volume=30&issue=1&article=009&type=fulltext
  28. Zhai S, Li M, Li M, Zhang X, Ye H, Lin Z, et al. Effect of dietary Moringa stem meal level on growth performance, slaughter performance and serum biochemical parameters in geese. J Anim Physiol Anim Nutr. 2020; 104(1):126–135. http://dx.doi.org/10.1111/jpn.13209
  29. Zaher HA, Alawaash SA, Tolba AM, Swelum AA, Abd El-Hack ME, Taha AE, et al. Impacts of Moringa oleifera foliage substituted for concentrate feed on growth, nutrient digestibility, hematological attributes, and blood minerals of growing goats under Abu Dhabi conditions. Sustain. 2020; 12(15):6096. http://dx.doi.org/10.3390/su12156096
  30. Ospina-Daza LA, Buitrago-Guillen ME, Vargas-Sánchez JE. Identification and degradation of mimosine, a toxic compound in Leucaena leucocephala (Lam.) de Wit. Pastos y Forrajes. 2017; 40(4):257–264. https://payfo.ihatuey.cu/index.php?journal=pasto&page=article&op=view&path%5B%5D=1994
  31. Nepomuceno D, Carvalho JC, Carvalho MG, Duarte R, Catunda F. Classes of secondary metabolites identified in three legume species. R Bras Zootec. 2013; 42(10):700–705. http://dx.doi.org/10.1590/S1516-35982013001000002
  32. Luckert C, Braeuning A, Lampen A, Hessel-Pras S. PXR: Structure-specific activation by hepatotoxic pyrrolizidine alkaloids. Chem Biol Interact. 2018; 288(2):38–48. http://dx.doi.org/10.1016/j.cbi.2018.04.017
  33. Verdecia DM, Herrera RS, Ramírez JL, Paumier M, Bodas R, Andrés S, et al. Erythrina variegata quality in the Cauto Valley, Cuba. Agroforest Syst. 2020; 94(4): 1209–1218. http://dx.doi.org/10.1007/s10457-019-00353-z
  34. Spittler AP, Afzali MF, Bork SB, Burton LH, Radakovich LB, Seebart CA, Moore AR, Santangelo KS. Age- and sex-associated differences in hematology and biochemistry parameters of Dunkin Hartley guinea pigs (Cavia porcellus). PLoS ONE. 2021; 16(7):e0253794. https://doi.org/10.1371/journal.pone.0253794
  35. Parimoo HA, Sharma R, Patil RD, Sharma OP, Kumar P, Kumar N. Efecto hepatoprotector del extracto de hoja de Ginkgo biloba sobre la hepatotoxicidad inducida por lantadenes en cobayos. Toxicon. 2014; 81(5):1–12. https://doi.org/10.1016/j.toxicon.2014.01.013
  36. Salihu SB. Comparative effect of three different energy sources on hematology and serum biochemistry of rabbits. J Anim Heal. 2020; 2(1):17–38. https://www.iprjb.org/journals/index.php/JAH/article/download/1164/1282/3628
  37. Garba Y, Adeola EA. Haematological and serum biochemical profile of growing Yankasa ram lambs fed diets containing graded levels of sesame residue. EJFOOD. 2020; 2(5):1–4. http://dx.doi.org/10.24018/ejfood.2020.2.5.133
  38. Lanca AJ, Israel Y. Histochemical demonstration of sinusoidal γ-glutamyltransferase activity by substrate protection fixation: Comparative studies in rat and guinea pig liver. Hepatology. 1991; 14(5):857–863. http://dx.doi.org/10.1002/hep.1840140518

Sistema OJS 3.4.0.3 - Metabiblioteca |