Gene expression of growth factor BMP15, GDF9, FGF2 and their receptors in bovine follicular cells
Expresión génica del factor de crecimiento BMP15, GDF9, FGF2 y sus receptores en células foliculares bovinas
How to Cite
Reineri, P. S., Coria, M. S., Barrionuevo, M. G., Hernández, O., Callejas, S., & Palma, G. A. (2018). Gene expression of growth factor BMP15, GDF9, FGF2 and their receptors in bovine follicular cells. Journal MVZ Cordoba, 23(3), 6778-6787. https://doi.org/10.21897/rmvz.1367
Dimensions
Show authors biography
Article visits 2139 | PDF visits
Downloads
Download data is not yet available.
- Sirard MA, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology 2006; 65(1):126–36. https://doi.org/10.1016/j.theriogenology.2005.09.020
- Paulini F, Silva RC, de Paula Rôlo JLJ, Lucci CM. Ultrastructural changes in oocytes during folliculogenesis in domestic mammals. J Ovarian Res 2014; 7(1):102. https://doi.org/10.1186/s13048-014-0102-6
- Otsuka F, McTavish K, Shimasaki S. Integral Role of GDF-9 and BMP-15 in Ovarian Function. Mol Reprod Dev 2011; 78(1):9–21. https://doi.org/10.1002/mrd.21265
- Chang H-M, Qiao J, Leung PCK. Oocyte–somatic cell interactions in the human ovary—novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update 2016; 23(1):1–18. https://doi.org/10.1093/humupd/dmw039
- Mishra SR, Thakur N, Somal A, Parmar MS, Reshma R, Rajesh G, et al. Expression and localization of fibroblast growth factor (FGF) family in buffalo ovarian follicle during different stages of development and modulatory role of FGF2 on steroidogenesis and survival of cultured buffalo granulosa cells. Res Vet Sci 2016; 108:98–111. https://doi.org/10.1016/j.rvsc.2016.08.012
- Mahesh YU, Gibence HRW, Shivaji S, Rao BS. Effect of different cryo-devices on In vitro maturation and development of vitrified-warmed immature buffalo oocytes. Cryobiology 2017; 75:106–16. https://doi.org/10.1016/j.cryobiol.2017.01.004
- Schams D, Steinberg V, Steffl M, Meyer HHD, Berisha B. Expression and possible role of fibroblast growth factor family members in porcine antral follicles during final maturation. Reproduction 2009; 138(1):141–9. https://doi.org/10.1530/REP-09-0033
- Silva JRV, van den Hurk R, Figueiredo JR. Ovarian follicle development In vitro and oocyte competence: advances and challenges for farm animals. Domest Anim Endocrinol 2016; 55:123–35. https://doi.org/10.1016/j.domaniend.2015.12.006
- European Union (EU). COUNCIL REGULATION (EC) No 1099/2009 on the protection of animals at the time of killing. Brussels, Belgium; 2009. http://www.fao.org/faolex/results/details/en/?details=LEX-FAOC090989
- de Loos F, van Vliet C, van Maurik P, Kruip TAM. Morphology of immature bovine oocytes. Gamete Res 1989; 24(2):197–204. https://doi.org/10.1002/mrd.1120240207
- Hatzirodos N, Hummitzsch K, Irving-Rodgers HF, Rodgers RJ. Transcriptome comparisons identify new cell markers for theca interna and granulosa cells from small and large antral ovarian follicles. PLoS One 2015; 10(3):1–13. https://doi.org/10.1371/journal.pone.0119800
- Kaivo-Oja N, Bondestam J, Kämäräinen M, Koskimies J, Vitt U, Cranfield M, et al. Growth differentiation factor-9 induces Smad2 activation and inhibin B production in cultured human granulosa-luteal cells. J Clin Endocrinol Metab 2003; 88(2):755–62. https://doi.org/10.1210/jc.2002-021317
- Mester B, Ritter LJ, Pitman JL, Bibby AH, Gilchrist RB, McNatty KP, et al. Oocyte expression, secretion and somatic cell interaction of mouse bone morphogenetic protein 15 during the peri-ovulatory period. Reprod Fertil Dev 2015; 27(5):801–11. https://doi.org/10.1071/RD13336
- Li Y, Li R-Q, Ou S-B, Zhang N-F, Ren L, Wei L-N, et al. Increased GDF9 and BMP15 mRNA levels in cumulus granulosa cells correlate with oocyte maturation, fertilization, and embryo quality in humans. Reprod Biol Endocrinol 2014; 12(1):81. https://doi.org/10.1186/1477-7827-12-81
- Pan ZY, Di R, Tang QQ, Jin HH, Chu MX, Huang DW, et al. Tissue-specific mRNA expression profles of GDF9, BMP15, and BMPR1B genes in prolific and non-prolific goat breeds. Czech J Anim Sci 2015; 60(10):452–8. https://doi.org/10.17221/8525-CJAS
- Kona SSR, Praveen Chakravarthi V, Siva Kumar AVN, Srividya D, Padmaja K, Rao VH. Quantitative expression patterns of GDF9 and BMP15 genes in sheep ovarian follicles grown in vitro or cultured in vitro. Theriogenology 2016; 85(2):315–22. https://doi.org/10.1016/j.theriogenology.2015.09.022
- Paradis F, Novak S, Murdoch GK, Dyck MK, Dixon WT, Foxcroft GR. Temporal regulation of BMP2, BMP6, BMP15, GDF9, BMPR1A, BMPR1B, BMPR2 and TGFβ-R1 mRNA expression in the oocyte, granulosa and theca cells of developing preovulatory follicles in the pig. Reproduction 2009; 138(1):115–29. https://doi.org/10.1530/REP-08-0538
- Hosoe M, Kaneyama K, Ushizawa K, Hayashi K, Takahashi T. Quantitative analysis of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) gene expression in calf and adult bovine ovaries. Reprod Biol Endocrinol 2011; 9(1):33. https://doi.org/10.1186/1477-7827-9-33
- Haas CS, Rovani MT, Oliveira FC, Vieira AD, Bordignon V, Gonçalves PBD, et al. Expression of growth and differentiation Factor 9 and cognate receptors during final follicular growth in cattle. Anim Reprod 2016; 13(4):756–61. https://doi.org/10.21451/1984-3143-AR789
- Al-musawi SL, Walton KL, Heath D, Simpson CM, Harrison CA. Species differences in the expression and activity of bone morphogenetic protein 15. Endocrinology 2013; 154(2):888–99. https://doi.org/10.1210/en.2012-2015
- Chen H, Liu C, Jiang H, Gao Y, Xu M, Wang J, et al. Regulatory Role of miRNA-375 in Expression of BMP15/GDF9 Receptors and its Effect on Proliferation and Apoptosis of Bovine Cumulus Cells. Cell Physiol Biochem 2017; 41(2):439–50. https://doi.org/10.1159/000456597
- Juengel JL, Bibby AH, Reader KL, Lun S, Quirke LD, Haydon LJ, et al. The role of transforming growth factor-beta (TGFβ) during ovarian follicular development in sheep. Reprod Biol Endocrinol 2004; 2:78. https://doi.org/10.1186/1477-7827-2-78
- Zoheir KMA, Harisa GI, Allam AA, Yang L, Li X, Liang A, et al. Effect of alpha lipoic acid on in vitro development of bovine secondary preantral follicles. Theriogenology 2017; 88:124–130. https://doi.org/10.1016/j.theriogenology.2016.09.013
- Zhu, G., Guo, B., Pan, D., Mu, Y., & Feng, S. Expression of bone morphogenetic proteins and receptors in porcine cumulus–oocyte complexes during in vitro maturation. Animal Reproduction Science, 2008; 104(2-4), 275-283. https://doi.org/10.1016/j.anireprosci.2007.02.011
- Dorey K, Amaya E. FGF signalling: diverse roles during early vertebrate embryogenesis. Development 2010; 137(22):3731–42. https://doi.org/10.1242/dev.037689
- Ozawa M, Yang QE, Ealy AD. The expression of fibroblast growth factor receptors during early bovine conceptus development and pharmacological analysis of their actions on trophoblast growth in vitro. Reproduction 2013; 145(2):191–201. https://doi.org/10.1530/REP-12-0220
- Zhang K, Hansen PJ, Ealy AD. Fibroblast growth factor 10 enhances bovine oocyte maturation and developmental competence in vitro. Reproduction. 2010; 140(6):815–26. https://doi.org/10.1530/REP-10-0190
- Nilsson E, Parrott J a, Skinner MK. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell Endocrinol. 2001; 175(1–2):123–30. https://doi.org/10.1016/S0303-7207(01)00391-4
- Khatib H, Maltecca C, Monson RL, Schutzkus V, Wang X, Rutledge JJ. The fibroblast growth factor 2 gene is associated with embryonic mortality in cattle. J Anim Sci. 2008; 86(9):2063–7. https://doi.org/10.2527/jas.2007-0791
- Berisha B, Sinowatz F, Schams D. Expression and Localization of Fibroblast Growth Factor (FGF) Family Members during the Final Growth of Bovine Ovarian Follicles. Mol Reprod Dev. 2004; 67(2):162–71. https://doi.org/10.1002/mrd.10386
- Rodríguez-Alvarez L, Sharbatib J, Sharbatib S, Coxa JF, Einspanier R, Ovidio Castro F. Differential gene expression in bovine elongated (Day 17) embryos produced by somatic cell nucleus transfer and in vitro fertilization. Theriogenology. 2010; 74(1):45–59. https://doi.org/10.1016/j.theriogenology.2009.12.018