Productivity and carcass characteristics of sheep supplemented with calcium propionate
Productividad y características de la canal de ovinos suplementados con propionato de calcio
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Show authors biography
Objective. Evaluate the effect of the inclusion of calcium propionate (PCa) on productive variables and carcass characteristics in finishing lambs. Materials and methods. 24 male lambs of the Dorper * Pelibuey cross of 5 months of age were used, with an average body weight (μ ± SD) of 27 ± 2.7. Were assigned to one of three treatments [control (CON) and two PCa levels: 10 and 20 g/kg DM] in a completely randomized design (3 treatments, 8 repetitions per treatment, considering each lamb as an experimental unit). Response variables were reduced to 1 mean value for each lamb, and data were analyzed in SAS version 9.4 using Proc Mixed. Results. Daily weight gain (DWG), conversion (FCE) and feed efficiency (FEU) were higher by 13, 20 and 24%, respectively, due to the inclusion of 20 g PCa / kg DM (p≤0. 05). Chilled carcass weight (CCW), hot carcass dressing (HCD) and cold carcass dressing (RCF) were higher when increasing the inclusion level of PCa (p≤0. 05). Conclusions. Supplementation with PCa in doses of up to 20g / kg in finishing diets can improve production parameters and carcass performance without affecting dry matter intake (DMI).
Article visits 577 | PDF visits
Downloads
- Zhang F, Nan X, Wang H, Guo Y, Xiong B. Research on the Applications of Calcium Propionate in Dairy Cows: A Review. Animals. 2020; 10(8):1336. https://doi.org/10.3390/ani10081336
- Dong Y, Bae HD, McAllister TA, Mathison GW, Cheng K-J. Lipid-induced depression of methane production and digestibility in the artificial rumen system (RUSITEC). Can J Anim Sci. 1997; 77(2):269-278. https://doi.org/10.4141/A96-078
- Kennedy KM, Donkin SS, Allen MS. Effect of uncouplers of oxidative phosphorylation on metabolism of propionate in liver explants from dairy cows. J Dairy Sci. 2021; 104(3):3018-3031. https://doi.org/10.3168/jds.2020-19536
- Larsen M, Kristensen NB. Precursors for liver gluconeogenesis in periparturient dairy cows. Animal. 2013; 7(10):1640-1650. https://doi.org/10.1017/S1751731113001171
- Loncke C, Nozière P, Vernet J, Lapierre H, Bahloul L, Al-Jammas M, et al. Net hepatic release of glucose from precursor supply in ruminants: a meta-analysis. Animal. 2020; 14(7):1422-1437. https://doi.org/10.1017/S1751731119003410
- Liu Q, Wang C, Guo G, Yang WZ, Dong KH, Huang YX, et al. Effects of calcium propionate on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. J Agric Sci. 2009; 147(2):201-209. https://doi.org/10.1017/S0021859609008429
- Liu Q, Wang C, Yang WZ, Guo G, Yang XM, He DC, et al. Effects of calcium propionate supplementation on lactation performance, energy balance and blood metabolites in early lactation dairy cows. J Anim Physiol Anim Nutr. 2010; 94(5):605-614. https://doi.org/10.1111/j.1439-0396.2009.00945.x
- Zhang X, Wu X, Chen W, Zhang Y, Jiang Y, Meng Q, et al. Growth performance and development of internal organ, and gastrointestinal tract of calf supplementation with calcium propionate at various stages of growth period. PloS One. 2017; 12(7):e0179940. https://doi.org/10.1371/journal.pone.0179940
- Martínez-Aispuro JA, Sánchez-Torres MT, Mendoza-Martínez GD, Mora JLC, Figueroa-Velasco JL, Ayala-Monter MA, et al. Addition of calcium propionate to finishing lamb diets. Vet México. 2018; 5(4):1-9. https://doi.org/10.22201/fmvz.24486760e.2018.4.470
- Cifuentes-Lopez O, Lee-Rangel HA, Mendoza GD, Delgado-Sanchez P, Guerrero-Gonzalez L, Chay-Canul A, et al. Effects of Dietary Calcium Propionate Supplementation on Hypothalamic Neuropeptide Messenger RNA Expression and Growth Performance in Finishing Rambouillet Lambs. Life. 2021; 11(6):566. https://doi.org/10.3390/life11060566
- Orellana Rivas RM, Gutierrez-Oviedo FA, Komori GH, Beihling VV, Marins TN, Azzone J, et al. Effect of supplementation of a mixture of gluconeogenic precursors during the transition period on performance, blood metabolites and insulin concentrations and hepatic gene expression of dairy cows. Anim Feed Sci Technol. 2021; 272:114791. https://doi.org/10.1016/j.anifeedsci.2020.114791
- Churakov M, Karlsson J, Edvardsson Rasmussen A, Holtenius K. Milk fatty acids as indicators of negative energy balance of dairy cows in early lactation. Animal. 2021; 15(7):100253. https://doi.org/10.1016/j.animal.2021.100253
- Cao N, Wu H, Zhang XZ, Meng QX, Zhou ZM. Calcium propionate supplementation alters the ruminal bacterial and archaeal communities in pre- and postweaning calves. J Dairy Sci. 2020; 103(4):3204-3218. https://doi.org/10.3168/jds.2019-16964
- Lee-Rangel HA, Mendoza GD, González SS. Effect of calcium propionate and sorghum level on lamb performance. Anim Feed Sci Technol. 2012; 177(3-4):237-241. https://doi.org/10.1016/j.anifeedsci.2012.08.012
- Maldini G, Kennedy KM, Allen MS. Temporal effects of ruminal infusion of propionic acid on hepatic metabolism in cows in the postpartum period. J Dairy Sci. 2019; 102(11):9781-9790. https://doi.org/10.3168/jds.2019-16437
- Zhang XZ, Meng QX, Lu L, Cui ZL, Ren LP. The effect of calcium propionate supplementation on performance, meat quality, and mRNA expression of finishing steers fed a high-concentrate diet. J Anim Feed Sci. 2015; 24(2):100-106. https://doi.org/10.22358/jafs/65634/2015
- Zhang Q, Koser SL, Bequette BJ, Donkin SS. Effect of propionate on mRNA expression of key genes for gluconeogenesis in liver of dairy cattle. J Dairy Sci. 2015; 98(12):8698-8709. https://doi.org/10.3168/jds.2015-9590
- Van Soest PJ, Robertson JB, Lewis BA. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J Dairy Sci. 1991; 74(10):3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
- SAS. User ́s guide Statistics. Version 9.0 Cary: SAS Institute Inc., 2002.
- Radojičić B, Joksimović-Todorović M, Bukvić M, Simeunović P, Kakishev M, Pračić N. The influence of sodium propionate on blood glucose, insulin and cortisol concentrations in calves of different ages. Acta Vet Brno. 2016; 85(2):127-132. https://doi.org/10.2754/avb201685020127
- Gualdrón-Duarte LB, Allen MS. Fuels derived from starch digestion have different effects on energy intake and metabolic responses of cows in the postpartum period. J Dairy Sci. 2018; 101(6):5082-5091. https://doi.org/10.3168/jds.2017-13607
- Mendoza-Martínez GD, Pinos-Rodríguez JM, Lee-Rangel HA, Hernández-García PA, Rojo-Rubio R, Relling A. Effects of dietary calcium propionate on growth performance and carcass characteristics of finishing lambs. Anim Prod Sci. 2016; 56(7):1194-1198. https://doi.org/10.1071/AN14824
- Bradford BJ, Allen MS. Phlorizin administration does not attenuate hypophagia induced by intraruminal propionate infusion in lactating dairy cattle. J Nutr. 2007; 137(2):326-330. https://doi.org/10.1093/jn/137.2.326
- Kennedy KM, Allen MS. Hepatic metabolism of propionate relative to meals for cows in the postpartum period. J Dairy Sci. 2019; 102(9):7997-8010. https://doi.org/10.3168/jds.2018-15907
- King TM, Beard JK, Norman MM, Wilson HC, Macdonald JM, Mulliniks JT. Effect of supplemental rumen undegradable protein and glucogenic precursors on digestibility and energy metabolism in sheep. Transl Anim Sci. 2019; 3(1):1714-1718. https://doi.org/10.1093/tas/txz064
- Berthelot V, Bas P, Schmidely P, Duvaux-Ponter C. Effect of dietary propionate on intake patterns and fatty acid composition of adipose tissues in lambs. Small Rumin Res. 2001; 40(1):29-39. https://doi.org/10.1016/S0921-4488(00)00217-0
- Cannas A, Tedeschi LO, Atzori AS, Lunesu MF. How can nutrition models increase the production efficiency of sheep and goat operations? Anim Front. 2019; 9(2):33-44. https://doi.org/10.1093/af/vfz005
- Zinn RA, Barreras A, Owens FN, Plascencia A. Performance by feedlot steers and heifers: daily gain, mature body weight, dry matter intake, and dietary energetics. J Anim Sci. 2008; 86(10):2680-2689. https://doi.org/10.2527/jas.2007-0561
- Wang Y, Wang Q, Dai C, Li J, Huang P, Li Y, et al. Effects of dietary energy on growth performance, carcass characteristics, serum biochemical index, and meat quality of female Hu lambs. Anim Nutr. 2020; 6(4):499-506. https://doi.org/10.1016/j.aninu.2020.05.008
- Junkuszew A, Nazar P, Milerski M, Margetin M, Brodzki P, Bazewicz K. Chemical composition and fatty acid content in lamb and adult sheep meat. Arch Anim Breed. 2020; 63(2):261-268. https://doi.org/10.5194/aab-63-261-2020
- Carvalho VB, Leite RF, Almeida MTC, Paschoaloto JR, Carvalho EB, Lanna DPD, et al. Carcass characteristics and meat quality of lambs fed high concentrations of crude glycerin in low-starch diets. Meat Sci. 2015; 110:285-292. https://doi.org/10.1016/j.meatsci.2015.08.001
- Brant LMS, de Freitas Júnior JE, Pereira FM, Pina D dos S, Santos SA, Leite LC, et al. Effects of alternative energy and protein sources on performance, carcass characteristics, and meat quality of feedlot lambs. Livest Sci. 2021; 251:104611. https://doi.org/10.1016/j.livsci.2021.104611